
Andy Budd
with Cameron Moll & Simon Collison

Foreword by Dan Cederholm

All the latest CSS tips, tricks,
and techniques

An in-depth look at the CSS3
features you can start using today

New case studies from two of the
world’s greatest CSS masters

neW edITIOn:
with	full	color	and	revised	

content	throughout

Trim: 7 x 9.125 spine = 0.090625" 392 page count

B
u
d
d
, M

o
ll,

C
o
lliso

n
C

SS M
ast

er

y

In this book you’ll learn how to:

	 Plan, organize, and maintain your CSS stylesheets more effectively

	 Apply the secrets of liquid, elastic, and hybrid layouts

	 Create rounded-corner boxes, drop shadows, and reflections using only CSS

	 Master the art of form layout

	 Track down and fix the most common browser bugs

This fully revised and full-color second edition of the
best-selling CSS Mastery contains everything you

need to know in order to become a CSS master yourself.
Packed full of brand-new examples covering the latest
advances in CSS3 and tips for the newest web browsers,
this book is your indispensable guide to the world of web
standards and front-end development.

While CSS is a relatively simple technology to learn, it is
a difficult one to master. When you first start developing
sites using CSS, you will come across all kinds of infuriat-
ing browser bugs and inconsistencies. It sometimes feels
like there are a million and one different techniques to
master, spread across a bewildering array of web sites.
The range of possibilities seems endless and makes for a
steep and daunting learning curve.

By bringing all of the latest tips, tricks, and techniques
together in one handy reference, this book demystifies
the secrets of CSS and makes the journey to CSS mas-
tery as simple and painless as possible. While most books
concentrate on basic skills, this one assumes you already
know the basics and want to gain a deeper understand-
ing of CSS and take your coding to the next level.

It begins with a brief recap of CSS fundamentals such
as the importance of meaningful markup, how to orga-
nize your CSS for maintainability, and how floating and
positioning really works. As most of us are self-taught,
these chapters will help demystify a number of common

misconceptions and give you a deeper understanding of
the workings of CSS.

With the basics out of the way, each subsequent
chapter details a particular aspect of CSS-based design.
Through a series of easy-to-follow tutorials, you will
learn practical CSS techniques you can immediately start
using in your daily work. Everything from the creation
of rounded-cornered boxes and bulletproof menus, to
advanced CSS3 features such as multiple background
images, box shadows, and multi-column layouts. Browser
inconsistencies are the thorn in most CSS developers'
sides, so we have dedicated an entire chapter on CSS
bugs and how to fix them across all modern browsers.

All of these techniques are then put into practice in two
brand-new, beautifully designed case studies, written by
two of the world’s best CSS designers, Simon Collison
and Cameron Moll.

  CYAN	   YELLOW
  MAGENTA	   BLACK

Also Available

US $39.99
Mac/PC compatible

www.friendsofed.com | www.cssmastery.com

SHELVING CATEGORY
1.	Web Development/General

this print for reference only—size & color not accurate

seco

n
d

ed

itio

n

CSS Mastery
Advanced Web Standards

Solutions
Second Edition

Andy Budd, Simon Collison, and Cameron Moll

CSS Mastery: Advanced Web Standards Solutions, Second Edition

Copyright © 2009 by Andy Budd, Simon Collison, and Cameron Moll

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-2397-9

ISBN-13 (electronic): 978-1-4302-2398-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-
ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail info@apress.com or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com in the
Downloads section.

Credits
Lead Editor:

Ben Renow-Clarke

Technical Reviewers:
Natalie Downe and Tony White

Editorial Board:
Clay Andres, Steve Anglin, Mark Beckner, Ewan

Buckingham, Tony Campbell, Gary Cornell,
Jonathan Gennick, Michelle Lowman, Matthew
Moodie, Jeffrey Pepper, Frank Pohlmann, Ben

Renow-Clarke, Dominic Shakeshaft, Matt Wade,
Tom Welsh

Project Managers:
Richard Dal Porto and Debra Kelly

Copy Editor:
Heather Lang

Compositor:
v-prompt

Indexer:
BIM Indexing

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.friendsofed.com

To Alison, for all the help and support over the last 6 months.

— Andy Budd

v

Contents at a Glance

Contents ..vii

Foreword ..xiv

About the Authors..xv

About the Technical Reviewers ..xvii

Acknowledgments...xviii

Introduction ..xx

Chapter 1: Setting the Foundations ...3

Chapter 2: Getting Your Styles to Hit the Target ..25

Chapter 3: Visual Formatting Model Overview ...51

Chapter 4: Using Backgrounds for Effect..71

Chapter 5: Styling Links ..109

Chapter 6: Styling Lists and Creating Nav Bars ...133

Chapter 7: Styling Forms and Data Tables..175

Chapter 8: Layout ...205

Chapter 9: Bugs and Bug Fixing ..245

Chapter 10: Case Study: Roma Italia ...275

Chapter 11: Case Study: Climb the Mountains ...311

Index ..355

vii

Contents

Foreword ..xiv

About the Authors..xv

About the Technical Reviewers ..xvii

Acknowledgments...xviii

Introduction ..xx

Who is this book for?...xx

How is this book structured? ...xx

Conventions used in this book ...xxi

Chapter 1: Setting the Foundations ...3

Structuring your code ..4

A brief history of markup ..4

The power of meaning ...6

IDs and class names..7

Naming your elements...9

IDs or Classes?..10

Divs and spans ..11

Microformats ..12

Different versions of HTML and CSS...16

Document types, DOCTYPE switching, and browser modes18

Validation..18

Browser modes ..20

DOCTYPE switching..21

Summary ...22

Chapter 2: Getting Your Styles to Hit the Target ..25

Common selectors ...25

Pseudo-classes..27

The universal selector ..27

Advanced selectors ..28

Child and adjacent sibling selectors ..28

Attribute selectors ..30

Contents

viii

The cascade and specificity ...35

Specificity...35

Using specificity in your style sheets ...37

Adding a class or an ID to the body tag...38

Inheritance..39

Planning, organizing, and maintaining your style sheets40

Applying styles to your document ..40

Structuring your code...42

Note to self...44

Removing comments and optimizing your style sheets.........................45

Style guides..45

Summary ...48

Chapter 3: Visual Formatting Model Overview ...51

Box model recap ...51

IE and the box model ...53

Margin collapsing ...54

Positioning recap...57

The visual formatting model ...57

Relative positioning ..59

Absolute positioning ...60

Fixed positioning..61

Floating...62

Line boxes and clearing...63

Summary ...69

Chapter 4: Using Backgrounds for Effect..71

Background image basics ...72

Rounded-corner boxes..75

Fixed-width rounded-corner boxes...75

Flexible rounded-corner box ..78

Mountaintop corners...81

Multiple background images ..83

Contents

ix

border-radius..85

border-image..86

Drop shadows ...88

Easy CSS drop shadows..88

Drop shadows à la Clagnut ..91

Box-shadow ...91

Opacity ..95

CSS opacity ...95

RGBa ...96

PNG transparency ...97

CSS parallax effect ..99

Image replacement..102

Fahrner Image Replacement (FIR) ..103

Phark ..104

Scalable Inman Flash Replacement (sIFR) ...104

Summary ...106

Chapter 5: Styling Links ..109

Simple link styling..109

Fun with underlines ...111

Simple link embellishments ..111

Fancy link underlines..112

Visited-link styles...113

Styling link targets ...113

Highlighting different types of links..115

Highlighting downloadable documents and feeds......................................117

Creating links that look like buttons...118

Simple rollovers..120

Rollovers with images ..120

Pixy-style rollovers ...121

CSS sprites...123

Rollovers with CSS 3..125

Contents

x

Pure CSS tooltips ..128

Summary ...130

Chapter 6: Styling Lists and Creating Nav Bars ...133

Basic list styling ...134

Creating a basic vertical nav bar...135

Highlighting the current page in a nav bar ..138

Creating a simple horizontal nav bar...139

Creating a graphical nav bar ...142

Simplified sliding door tabbed navigation..144

Suckerfish drop-downs..147

CSS image maps ..151

Flickr-style image maps..156

Remote rollovers ...165

A short note about definition lists ..171

Summary ...172

Chapter 7: Styling Forms and Data Tables..175

Styling data tables ...176

Table-specific elements..178

Summary and caption..178

thead, tbody, and tfoot ...178

col and colgroups...179

Data table markup ..179

Styling the table..181

Adding the visual style..182

Simple form layout...185

Useful form elements ...186

Form labels ..187

The basic layout ...188

Other elements...189

Embellishments ..192

Required fields ...193

Contents

xi

Complicated form layout ...193

Accessible date input ...195

Multicolumn check boxes ...196

Submit buttons ...198

Form feedback ...201

Summary ...203

Chapter 8: Layout ...205

Planning your layout..206

Setting the foundations ...208

Centering a design using margins..210

Float-based layouts ...212

Two-column floated layout ...213

Three-column floated layout...216

Fixed-width, liquid, and elastic layout..219

Liquid layouts ..220

Elastic layouts ...223

Liquid and elastic images..226

Faux columns ..228

Equal-height columns..231

CSS 3 columns..236

CSS Frameworks vs. CSS Systems ...238

Summary ...243

Chapter 9: Bugs and Bug Fixing ..245

Bug hunting ...246

Common CSS problems...246

Problems with specificity and sort order ..247

Problems with margin collapsing ...249

Bug hunting basics ..252

Try to avoid bugs in the first place ...254

Isolate the problem...254

Creating minimal test cases ...255

Contents

xii

Fixing the problem, not the symptoms ...256

Asking for help..256

Having layout...256

What is layout?...257

What effect does layout have?...258

Workarounds ...260

Internet Explorer conditional comments...260

A warning about hacks and filters ..261

Using hacks and filters sensibly ...262

Applying the IE for Mac band pass filter...262

Applying the star HTML hack ...263

Applying the child selector hack...264

Common bugs and their fixes ...264

Double-margin float bug ...264

Three-pixel text jog bug..265

IE 6 duplicate character bug...267

IE 6 peek-a-boo bug...269

Absolute positioning in a relative container..269

Stop picking on Internet Explorer ...270

Graded browser support ...271

Summary ...273

Chapter 10: Case Study: Roma Italia ...276

About this case study ..276

The foundation ..278

An eye towards HTML 5...279

reset.css ...281

The 1080 layout and grid ..282

Using grids in web design ..283

Advanced CSS2 and CSS3 features ..285

Dowebsitesneedtolookexactlythesameineverybrowser.com?....................285

Attribute selector ..288

Contents

xiii

box-shadow, RGBa, and text-overflow...289

Font linking and better web typography ..293

Setting font-size like it’s 1999...293

Hanging punctuation ..294

Multi-column text layout..296

@font-face..298

Cufón, an interim step towards @font-face..301

Adding interactivity with Ajax and jQuery..303

Ajax...304

jQuery ...305

Using Ajax + jQuery for the search feature ..307

Summary ...310

Chapter 11: Case Study: Climb the Mountains ...311

About this case study ..312

Style Sheet organization and conventions..314

The hard-working screen.css ...315

Describing contents ...315

Reset ..316

IE style sheets using conditional comments ..317

Grid flexibility ...317

How does the CTM layout work? ...318

Navigation control with body classes ..319

Highlighting the current page ...319

Layering the blockquote ...323

Strategically targeting elements ..325

Deep descendent selectors..325

The :first-child pseudo-class...329

Adjacent sibling selectors...331

Transparency, shadows, and rounded corners...332

Our aim...332

Caption image overlay and RGBa transparency..333

mailto:@font-face..298
mailto:@font-face..301

Contents

xiv

Combining classes ...336

border-radius ..337

box-shadow ..339

Positioning lists and revealing content ..340

Rounding the corners ...343

The main elevation chart ..344

Summary ...351

Index ..355

xv

Foreword

In our wonderful world of web design, there are 3,647 ways to accomplish the same goal—
approximately. And that absurdly fictitious number is increasing every day. Instead of one, correct
way of solving a particular problem, we’re both blessed and cursed by the abundant choices we
have as web designers. It’s these choices that make designing for the Web fun and interesting,
while at the same time overwhelming. CSS Mastery will help cure that overwhelmingitis (a word
that I’ve just invented).

Andy Budd has been writing, designing, and speaking about standards-based web design for
years, and we’re now lucky to see his clear, easy-to-follow way of teaching essential CSS
techniques compiled in this very book. The result is a card catalog of indispensable solutions,
tricks, and tips that a web professional such as yourself should not be without.

I’ve always frowned on publications that suggest a single, correct way of accomplishing a goal,
and Andy does the complete opposite, offering multiple methods for tasks such as styling links,
creating tabbed navigation, utilizing time-saving CSS3 solutions, or creating fixed, fluid, or elastic
layouts, as well as giving tips on how to troubleshoot those pesky browser bugs that go along
with designing with CSS (to name but a few). Armed with these popular and stylish approaches to
common design elements, you’ll be better prepared to make your own informed decisions.

And as if that wasn’t enough, Andy’s gone ahead and enlisted the help of two imitable designers
to help pull all the pieces together, showing how these essential techniques can work together.
I’ve long been a fan of Cameron’s and Simon’s work, and to see two great case studies covering
fluid, bulletproof designs as well as flexible style solutions, respectively, well, that’s just a gigantic
bonus.

So dig in and start chipping away at those 3,647 ways to master your CSS.

Dan Cederholm

Author, Web Standards Solutions

xvi

About the Authors

Andy Budd is one of the founding partners at User Experience Design
Consultancy, Clearleft (clearleft.com). As an interaction design and
usability specialist, Andy is a regular speaker at international conferences
like Web Directions, An Event Apart, and SXSW. Andy curates dConstruct
(dconstruct.org), one of the UK’s most popular design conferences. He's
also responsible for UX London (uxlondon.com), the UK’s first dedicated
usability, information architecture, and user experience design event.

Andy was an early champion of web standards in the UK and has
developed an intimate understanding of the CSS specification and cross-browser support. As an
active member of the community, Andy has helped judge several international design awards and
currently sits on the advisory board for .Net magazine. Andy is also the driving force behind
Silverbackapp (silverbackapp.com), a low-cost usability testing tool for the Mac. Andy is an avid
Twitter user (@andybudd) and occasionally blogs at andybudd.com.

Never happier than when he's diving in some remote tropical atoll, Andy is a qualified PADI dive
instructor and retired shark wrangler.

Cameron Moll has been designing meaningful web interfaces that
harmonize utility and presentation since the late 1990s. His work or advice
has been featured by HOW, Print, and Communication Arts magazines,
Forrester Research, National Public Radio (NPR), and many others. He
speaks on user interface design at conferences nationally and
internationally, and he is also the author of Mobile Web Design
(mobilewebbook.com).

Cameron is the founder and president of Authentic Jobs Inc.
(authenticjobs.com), a targeted destination for web and creative professionals and the
companies seeking to hire them. He is also the proprietor of Cameron Moll LLC, whose products
include letterpress typography posters available for purchase at cameronmoll.bigcartel.com. And
amid all this craziness, he still finds time to play ball with each of his four boys.

You can also find Cameron online at cameronmoll.com, twitter.com/cameronmoll,
flickr.com/photos/authentic, and vimeo.com/cameronmoll.

About the Authors

xvii

Simon Collison is cofounder and creative director at Erskine Design
(erskinedesign.com), part of a talented team of designers and developers
doing exceptional things. Over the last ten years, he’s worked on
numerous web projects for record labels and bands, visual artists,
businesses, government—pretty much the full gamut. He's now working
with a broad client list ranging from established magazines to polar
explorers.

Colly writes a long-running blog (colly.com), writes about the web at
ErskineLabs (erskinelabs.com) and he has written the bestselling Beginning CSS Web
Development (ISBN: 978-1-59059-689-0) for Apress and coauthored Web Standards Creativity
(ISBN: 978-1-59059-803-0). He’s never happier than when he’s experimenting with CSS and
HTML, or when talking about it in front of an audience.

In the real world, Colly loves climbing mountains and getting lost in the wildernesses of the UK or
Iceland. He drives a 32-year-old car and has a stupid cat called Bearface.

xviii

About the Technical Reviewers

Natalie Downe is a perfectionist by nature and works for Brighton’s Clearleft as a client-side web
developer. An experienced usability consultant and project manager, her first loves remain front-
end development and usability engineering. She enjoys Doing Things Right and occasionally
dabbling in the dark arts of Python and poking the odd API.

Tony White is a front-end developer and designer living in Memphis,
Tennessee. During the day he is the user interface manager for Hilton
Hotels, where he nurtures usability, advocates web standards, and lassos
HTML with jQuery. He also runs the one-man show Ask the CSS Guy
(askthecssguy.com), an after-hours site devoted to peaking under the hood
of CSS and JavaScript web design techniques.

xix

Acknowledgments

Thanks to everybody who helped make this book possible, both directly and indirectly.

To my friends and colleagues at Clearleft: Thanks for providing encouragement and feedback
throughout the book-writing process. And especially to Natalie Downe for lending your experience
and breadth of knowledge to this book: Your support and guidance was invaluable, and I still
don’t know where you manage to find the time.

To Chris Mills for guiding me through the initial writing process and helping turn my ideas into
reality, and to everybody at Apress who worked tirelessly to get this book published on time: Your
dedication and professionalism is much appreciated.

To all my colleagues who continue to share their wealth of knowledge in order to make the Web a
better place: This book would not have been possible without the previous work of the following
people, to name but a few: Cameron Adams, John Allsopp, Rachel Andrew, Nathan Barley, Holly
Bergevin, Mark Boulton, Douglas Bowman, The BritPack, Dan Cederholm, Tantek Çelik, Joe
Clark, Andy Clarke, Simon Collison, Mike Davidson, Garrett Dimon, Derek Featherstone, Nick
Fink, Patrick Griffiths, Jon Hicks, Molly E. Holzschlag, Shaun Inman, Roger Johansson, Jeremy
Keith, Ian Lloyd, Ethan Marcotte, Drew McLellan, Eric Meyer, Cameron Moll, Dunstan Orchard,
Veerle Pieters, D. Keith Robinson, Richard Rutter, Jason Santa Maria, Dave Shea, Jeffrey Veen,
Russ Weakley, Simon Willison, and Jeffrey Zeldman.

To all the readers of my blog and everybody I’ve met at conferences, workshops, and training
events over the last couple of years: Your discussions and ideas helped fuel the content of this
book.

And finally, thanks to you for reading. I hope this book helps you take your CSS skills to the next
level.

Andy Budd

First, thanks to you for choosing this book. I hope it improves the caliber of work you do, day in
and day out. I’m endlessly inspired by the potential of those in our industry, and that includes you.

I echo Andy’s words in giving thanks to the many notable individuals that have shaped and
refined the Web, making it a better place today than it’s ever been. Years from now, these
individuals will be just as revered as those men and women who first sent men to the Moon.

A special thanks to Aaron Barker (aaronbarker.net) who assisted with several of the jQuery and
AJAX examples in my case study.

Most importantly, I give my utmost gratitude to my beautiful wife, Suzanne, and four sons,
Everest, Edison, Isaac, and Hudson. Without their love, support and patience, the work I’ve
produced to date would not have been realized.

Cameron Moll

Acknowledgments

xx

I must thank my friend and colleague Gregory Wood for his ideas and assistance with the “Climb
the Mountains” concept. Everything he produces inspires me, and he’s the designer I want to be
when I grow up. I’d also like to thank all of my colleagues at Erskine Design for their support and
for turning a blind eye to my feverish work on projects such as this. Big thanks to Simon
Campbell, Jamie Pittock, Glen Swinfield, Phil Swan, Vicky Twycross, and Angela Campbell.

Above all, I should take this opportunity to thank my mum, and those that I have lost since the
first edition of this book, my two grandfathers, and especially my dad. I still do this stuff to make
you proud, even though you’ve gone.

Simon Collison

xxi

Introduction

There are an increasing number of CSS resources around, yet you only have to look at a CSS
mailing list to see the same questions popping up time and again: How do I center a design?
What is the best rounded-corner box technique? How do I create a three-column layout?

If you follow the CSS design community, finding the solution is usually a case of remembering
which website a particular article or technique is featured on. However, if you are relatively new to
CSS, or don’t have the time to read all the blogs, this information can be hard to track down.

Even people who are skilled at CSS run into problems with some of the more obscure aspects of
CSS such as the positioning model or specificity. This is because most CSS developers are self-
taught, picking up tricks from articles and other people’s code without fully understanding the
specifications. And is it any wonder, as the CSS specification is complex, often contradictory, and
written for browser manufacturers rather than web developers?

Then there are the browsers to contend with. Browser bugs and inconsistencies are one of the
biggest problems for the modern CSS developer. Unfortunately, many of these bugs are poorly
documented, and their fixes verge on the side of folk law. You know that you have to do
something a certain way, or it will break in one browser or another. You just can’t remember for
which browser or how it breaks.

So the idea for a book formed. A book that brings together the most useful CSS techniques in
one place, that focuses on real-world browser issues and that helps plug common gaps in
people’s CSS knowledge. A book that will help you jump the learning curve and have you coding
like a CSS expert in no time flat.

Who is this book for?
CSS Mastery is aimed at anybody with a basic knowledge of HTML and CSS. If you have just
recently dipped your toes into the world of CSS design, or if you’ve been developing pure CSS
sites for years, there will be something in this book for you. However, you will get the most out of
this book if you have been using CSS for a while but don’t consider yourself an expert just yet.
This book is packed full of practical, real-world advice and examples to help you master modern
CSS design.

How is this book structured?
This book eases you in gently, with three chapters on basic CSS concepts and best practices.
You will learn how to structure and comment your code, the ins-and-outs of the CSS positioning
model, and how floating and clearing really works. You may know a lot of this already, but you will
probably find bits you’ve missed or not understood fully. As such, the first three chapters act as a
great CSS primer as well as a recap on what you already know.

With the basics out of the way, the next five chapters cover core CSS techniques such as image,
link, and list manipulation; form and data-table design; and pure CSS layout. Each chapter starts

Introduction

xxii

simply and then works up to progressively more complicated examples. In these chapters, you
will learn how to create rounded-corner boxes, images with transparent drop shadows, tabbed
navigation bars, and interactive buttons. With many of these techniques, you will first learn the
traditional way of doing them before seeing how you can achieve the same affect using CSS 3. If
you want to follow along with the examples in this book, all the code examples can be
downloaded from www.cssmastery.com or www.friendsofed.com.

Browser bugs are the bane of many a CSS developer, so all the examples in this book focus on
creating techniques that work across browsers. What’s more, this book contains a whole chapter
devoted to bugs and bug fixing. In this chapter, you will learn all about bug-hunting techniques
and how to spot and fix common bugs before they start causing problems. You will even learn
what really causes many of Microsoft Internet Explorer’s seemingly random CSS bugs.

The last two chapters are the pièce de résistance. Simon Collison and Cameron Moll, two of the
best CSS designers around, have combined all of these techniques into two fantastic case
studies. So you learn not only how these techniques work but also how to put them into practice
on a real-life web project.

This book can be read from cover to cover or kept by your computer as a reference of modern
tips, tricks, and techniques. The choice is up to you.

Conventions used in this book
This book uses a couple of conventions that are worth noting. The following terms are used
throughout this book:

• HTML refers to both the HTML and XHTML languages.

• Unless otherwise stated, CSS relates to the CSS 2.1 specification.

• Internet Explorer 6 (IE 6) and below on Windows refers to Internet Explorer 5.0 to 6.0 on
Windows.

• Modern browsers are considered to be the latest versions of Firefox, Safari, and Opera
along with IE 7 and above.

• It is assumed that all the HTML examples in this book are nested in the <body> of a valid
document, while the CSS is contained within an external style sheet. Occasionally,
HTML and CSS have been placed in the same code example for brevity. However, in a
real document, these items need to go in their respective places to function correctly.

Finally, for HTML examples that contain repeating data, rather than writing out every line, the
ellipsis character (. . .) is used to denote code continuation:

With the formalities out of the way, let’s get started.

http://www.cssmastery.com
http://www.friendsofed.com

3

CHAPTER 1

4

3

Chapter 1

Setting the Foundations

The human race is a naturally inquisitive species. We just love tinkering with things. When I
recently bought a new iMac, I had it to bits within seconds, before I’d even read the instruction
manual. We enjoy working things out ourselves and creating our own mental models of how we
think things behave. We muddle through and only turn to the manual when something goes
wrong or defies our expectations.

One of the best ways to learn Cascading Style Sheets (CSS) is to jump right in and start
tinkering. In fact, I imagine this is how the majority of you learned to code, by picking things up off
blogs, viewing source to see how things worked, and then trying them out on your personal sites.
You almost certainly didn’t start by reading the full CSS specification, which is enough to put
anyone to sleep.

Tinkering is a great way to start, but if you’re not careful, you may end up misunderstanding a
crucial concept or building in problems for later on. I know; I’ve done so several times. In this
chapter, I am going to review some basic but often misunderstood concepts and show you how to
keep your HTML and CSS clear and well structured.

In this chapter you will learn about

• Structuring your code

• The importance of meaningful documentation

• Naming conventions

• When to use IDs and class names

CHAPTER 1

4

• Microformats

• Different versions of HTML and CSS

• Document types, DOCTYPE switching, and browser modes

Structuring your code
Most people don’t think about the foundations of a building. However, without solid foundations,
the majority of buildings wouldn’t stay standing. While this book is about advanced CSS
techniques, much of what you are about to learn would not be possible (or at least would be very
difficult) without a well-structured and valid HTML document to work with.

In this section, you will learn why well-structured and meaningful HTML is vital to standards-
based development. You will also learn how you can add more meaning to your documents, and
by doing so, make your job as a developer easier.

A brief history of markup
The early Web was little more than a series of interlinked research documents using HTML to add
basic formatting and structure. However, as the World Wide Web gained in popularity, HTML
started being used for presentational purposes. Instead of using heading elements for page
headlines, people would use a combination of font and bold tags to create the visual effect they
wanted. Tables got co-opted as a layout tool rather than a way of displaying data, and people
would use blockquote to add whitespace rather than to indicate quotations. Very quickly, the Web
lost its meaning and became a jumble of font and table tags. Web designers came up with a
name for this kind of markup; they called it tag soup (see Figure 1-1).

Figure 1-1. The markup for the lead story from abcnews.com on August 14, 2000, uses tables for
layout and large, bold text for headings. The code lacks structure and is difficult to understand

SETTING THE FOUNDATIONS

5

As web pages became more and more presentational, the code became increasingly difficult to
understand and maintain. WYSIWYG (What You See Is What You Get) editors offered authors an
escape from these complexities and promised a brave new world of visual layout. Unfortunately,
rather than making things simpler, these tools added their own complicated markup to the mix.
Editors like FrontPage or Dreamweaver allowed users to build complex table layouts at the click
of a button, cluttering the code with nested tables and “spacer GIFs” (see Figure 1-2). Sadly,
these layouts were extremely fragile and prone to breaking. Because the markup was littered with
meaningless code, it was easy to delete the wrong tag and watch the whole layout crumble.
Furthermore, due to the complexity of the code, bug hunting was almost impossible. It was often
easier to code the page from scratch than hunt around in the hope of fixing the bug. Things were
further complicated if you were working on a large site. Because the presentation of the site was
locked into the individual pages, you had to craft complicated “find and replace” routines to make
even the smallest sitewide change. I’ve broken more than one site in my time because of a hastily
constructed “find and replace” routine. Consequently, your page templates would go out of sync
extremely quickly, and a simple change could mean hand editing every page on your site.

Tables were never meant for layout, so David Siegel invented a clever hack to make them work.
In order to prevent tables from horizontally or vertically collapsing, Siegel suggested using a 1-
pixel transparent GIF. By putting these hidden images in their own table cells and then scaling
them vertically or horizontally, you could artificially enforce a minimum width on the cells, thus
preserving the layout. Also known as a “shim GIF” because of the file name given to them in
Dreamweaver, they were an extremely common sight in old school table-based layouts.
Thankfully, the practice has now died out, so you no longer see these presentational elements
cluttering up your code.

Rather than being seen as a simple markup language, HTML gained a reputation for being
complicated, confusing, and prone to errors. Consequently, many people were afraid of touching
the code, which resulted in an overreliance on visual editors and spawned a whole generation of
designers that didn’t understand how to code.

By the turn of the millennium, the web design industry was in a mess, and something needed to
be done.

CHAPTER 1

6

Figure 1-2. A screenshot of Homesite showing a complicated table-based layout using lots of
spacer GIFs (courtesy of Jeff L.).

Then along came Cascading Style Sheets. CSS allowed authors to control how a page looked
through an external style sheet, making it possible to separate the content from presentation.
Now, sitewide changes could be made in one place and would propagate throughout the system.
Presentational tags like the font tag could be ditched, and layout could be controlled using CSS
instead of tables. Markup could be made simple again, and people began to develop a newfound
interest in the underlying code.

Meaning started to creep back into documents. Browser default styles could be overridden, so it
became possible to mark up something as a heading without it being big, bold, and ugly. Lists
could be created that didn’t display as a series of bullet points, and blockquotes could be used
without the associated styling. Developers started to use HTML elements because of what they
meant rather than how they looked (see Figure 1-3).

SETTING THE FOUNDATIONS

7

Figure 1-3. The markup for the lead story on abcnews.com from earlier this year is well structured
and easy to understand. While it does contain some presentational markup, the code is a
significant improvement on the code in Figure 1-1.

The power of meaning
Meaningful markup provides the developer with several important benefits. Meaningful pages are
much easier to work with than presentational ones. For example, say you need to change a
quotation on a page. If the quotation is marked up correctly, it is easy to scan through the code
until you find the first blockquote element. However, if the quotation is just another paragraph
element, it will be a lot harder to find. For a more complicated, but no less realistic example, say
that you needed to add an extra column to your homepage. You could simply drop the content in
at the right point and then update the widths in your CSS. To do the same in a table-based layout
you’d need to add an extra column in your table, change the colspan settings, alter the widths on
all the cells, and change the widths of all your shim gifs. In effect, you’d have to change the entire
structure of your page to accommodate this simple change.

As well as being easy for humans to understand, meaningful markup—otherwise known as
semantic markup—can be understood by programs and other devices. Search engines, for
instance, can recognize a headline because it is wrapped in h1 tags and assign more importance
to it. Screen reader users can rely on headings as supplemental page navigation.

Most importantly for the context of this book, meaningful markup provides you with a simple way
of targeting the elements you wish to style. It adds structure to a document and creates an
underlying framework to build upon. You can style elements directly without needing to add other
identifiers, and thus avoid unnecessary code bloat.

HTML includes a rich variety of meaningful elements, such as

• h1, h2, and so on

• ul, ol, and dl

CHAPTER 1

8

• strong and em

• blockquote and cite

• abbr, acronym, and code

• fieldset, legend, and label

• caption, thead, tbody, and tfoot

As such, it is always a good idea to use an appropriate meaningful element where one exists.

Every few years the CSS versus tables argument seems to flare up on blogs, mailing lists, or
developer forums. The discussion is usually sparked when developers who have grown
accustomed to the table-based approach rebel against the idea of having to learn a new skill. I
can sympathies with this reaction, as CSS-based layout does seem difficult at first, especially
when your current process seems to work. However, the benefits of CSS have been debated
numerous times and include things like less code bloat, faster downloads, and easier
maintenance to name just three. Most professional developers have come to see the benefits of
web standards, and it’s rare to see an agency of any size or quality doing things the old-fashioned
way. So if you’re still using table based layout, you’re going to find it increasingly difficult to get
work with agencies. Thankfully, these old habits are dying out, and there is a whole new
generation of developers who have never had to suffer the inconvenience of table-based layout.

IDs and class names
Meaningful elements provide an excellent foundation, but the list of available elements isn’t
exhaustive. HTML 4 was created as a simple document markup language rather than an interface
language. Because of this, dedicated elements for things such as content areas or navigation
bars just don’t exist. You could create your own elements using XML, but for reasons too
complicated to go into, it’s not very practical.

HTML 5 hopes to solve some of these problems by providing developers with a richer set of
elements to work with. These include structural elements like header, nav, article, section, and
footer as well as well as new UI features like data inputs and the menu element. In preparation
for HTML 5, many developers have started adopting these as naming conventions for their ID and
class names.

The next best thing is to take existing elements and give them extra meaning with the addition of
an ID or a class name. This adds additional structure to your document and provides useful
hooks for your styles. So you could take a simple list of links, and by giving it an ID of nav, create
your own custom navigation element.

SETTING THE FOUNDATIONS

9

<ul id="nav">

 Home

 About Us

 Contact

An ID is used to identify a specific element, such as the site navigation, and must be unique to
that page. IDs are useful for identifying persistent structural elements such as the main navigation
or content areas. They are also useful for identifying one-off elements—a particular link or form
element, for example.

While a single ID name can only be applied to one element on a page, the same class name can
be applied to any number of elements on a page. This makes classes much more powerful.
Classes are useful for identifying types of content or similar items. For instance, you may have a
page that contains multiple news stories.

<div id="story-id-1">

 <h2>Salter Cane win Best British Newcomer award</h2>

 <p>In a surprise turn of events, alt folk group, Salter Cane, won

Best British Newcomer and the Grammys this week…</p>

</div>

<div id="story-id-2">

 <h2>Comic Sans: The Movie wins best documentary at the BAFTAs </h2>

 <p>The story of this beloved typeface one the best documentary

category. Director Richard Rutter was reported to be speechless…</p>

</div>

Rather than giving each story a separate ID, you would give them all a class of news.

<div class="news">

 <h2>Salter Cane win Best British Newcomer award</h2>

 <p>In a surprise turn of events, alt folk group, Salter Cane, won

Best British Newcomer and the Grammys this week…</p>

</div>

CHAPTER 1

10

<div class="news">

 <h2>"Comic Sans: The Movie" wins best documentary at the BAFTAs </h2>

 <p>The story of this beloved typeface one the best documentary

category. Director Richard Rutter was reported to be speechless…</p>

</div>

Naming your elements
When naming your IDs and classes, it is important that you keep the names as “unpresentational”
as possible. For instance, if you want all of your form notification messages to be red, you could
give them a class of red. This is fine as long as there are no other red elements on the page.
However, say you wanted to style required form labels red as well. You are now forced to guess
to which element that class could refer, and things are already starting to get confusing. Imagine
how confusing the code could become if you used presentational elements across the whole site?
This gets even more complicated if you decide to change the presentation of your form
notifications from red to yellow. Now, you either have to go back and change all your class
names, or you have an element called red that looks yellow.

Instead, it makes sense to name your elements based on what they are rather than how they
look. That way your code will have more meaning and never go out of sync with your designs. So
in the previous example, rather than giving your notifications a class of red, you should give them
a more meaningful name like .warning or .notification (see Figure 1-4). The great thing about
meaningful class names is that you can reuse them across your site. For instance, you could also
use the class of .notification on other types of messages, and style them completely differently
based on where they are in the document.

Figure 1-4. Good and bad ID names

When writing class and ID names, you need to pay attention to case sensitivity, as browsers
assume .andybudd is a different class from .andyBudd. The best way to handle this issue is simply
to be consistent with your naming conventions. I always keep all my class and ID names
lowercase and separate multiple words with a hyphen for legibility. So andy-budd is more legible
than andyBudd.

SETTING THE FOUNDATIONS

11

IDs or Classes?
It is often difficult to decide if an element should have an ID or class name. As a general rule,
classes should be applied to conceptually similar items that could appear in multiple places on
the same page, whereas IDs should be applied to unique elements. However, you then get into a
debate about which elements are conceptually similar and which elements are unique.

For instance, imagine you have a site that contains primary navigation in the header, page-based
navigation at the bottom of the search results page, and tertiary navigation in the footer. Do you
give each of these a separate ID like main-nav, page-nav, and footer-nav, or do you give them all
a class of nav and style them based on their position in the document? I used to prefer the former
approach, as it felt slightly more targeted. However, it comes with its own set of problems. What
happens if I decide that I now need search results navigation at the top and the bottom of the
search page or that I need two levels of navigation in the footer?

If you use a lot of IDs, you will start to run out of unique names very quickly and end up creating
extremely long and complicated naming conventions. So these days, I tend to prefer class names
and only use IDs if I’m targeting something extremely specific and know that I’ll never want to use
that name for something different elsewhere on the site. Or to put it another way, you should only
use an ID if you’re absolutely sure the item will appear only once. If you think you will need similar
items in the future, use a class. By keeping your naming conventions general and using classes
you don’t end up with long chains of ID selectors all with very similar styles.

#andy, #rich, #jeremy, #james-box, #cennydd, #paul, #natalie, #sophie {

 font-size: 1.6em;

 font-weight: bold;

 border: 1px solid #ccc;

}

You can simply create a generic class for them all.

.staff {

 font-size: 1.6em;

 font-weight: bold;

 border: 1px solid #ccc;

}

Due to the flexibility of classes, they can be very powerful. At the same time, they can be
overused and even abused. Novice CSS authors often add classes to nearly everything in an
attempt to get fine-grained control over their styles. Early WYSIWYG editors also had the
tendency to add classes each time a style was applied. Many developers picked up this bad habit
when using generated code to learn CSS. This affliction is described as classitis and is, in some
respects, as bad as using table-based layout because it adds meaningless code to your
document.

CHAPTER 1

12

<h2 class="news-head">Andy wins an Oscar for his cameo in Iron Man</h2>

 <p class="news-text">

 Andy Budd wins the Oscar for best supporting actor in Iron Man

 after his surprise cameo sets Hollywood a twitter with speculation.

 </p>

 <p class="news-text">More</p>

In the preceding example, each element is identified as being part of a news story by using an
individual news-related class name. This has been done to allow news headlines and text to be
styled differently from the rest of the page. However, you don’t need all these extra classes to
target each individual element. Instead, you can identify the whole block as a news item by
wrapping it in a div (code) with a class name of news. You can then target news headlines or text
by simply using the cascade.

<div class="news">

 <h2>Andy wins an Oscar for his cameo in Iron Man </h2>

 <p>Andy Budd wins the Oscar for best supporting actor in Iron Man

after his surprise cameo sets Hollywood a twitter with speculation.</p>

 <p>More</p>

</div>

Anytime you find yourself repeating words in your class names like news-head and news-link or
section-head and section-foot, it would be worth looking to see if you can break those elements
into their constituent parts. This makes your code much more componentized and hence much
more flexible.

Removing extraneous classes in this way will help simplify your code and reduce page weight. I
will discuss CSS selectors and targeting your styles shortly. However, this overreliance on class
names is almost never necessary. If you find yourself adding lots of classes, it’s probably an
indication that your HTML document is poorly structured.

Divs and spans
One element that can help add structure to a document is the div element. Many people
mistakenly believe that a div element has no semantic meaning. However, div actually stands for
division and provides a way of dividing a document into meaningful areas. So by wrapping your
main content area in a div and giving it a class of content, you are adding structure and meaning
to your document.

To keep unnecessary markup to a minimum, you should only use a div element if there is no
existing element that will do the job. For instance, if you are using a list for your main navigation,
there is no need to wrap it in a div.

SETTING THE FOUNDATIONS

13

<div class="nav">

 Home

 About Us

 Contact

</div>

You can remove the div entirely and simply apply your class to the list instead:

<ul class="nav">

 Home

 About Us

 Contact

Using too many divs is often described as divitus and is usually a sign that your code is poorly
structured and overly complicated. Some people new to CSS will try to replicate their old table
structure using divs. But this is just swapping one set of extraneous tags for another. Instead,
divs should be used to group related items based on their meaning or function rather than their
presentation or layout.

Whereas divs can be used to group block-level elements, spans can be used to group or identify
inline elements:

<h2>Andy wins an Oscar for his cameo in Iron Man </h2>

 <p>Published on February 22nd, 2009

by Harry Knowles</p>

Although the goal is to keep your code as lean and mean(ingful) as possible, sometimes you
cannot avoid adding an extra nonsemantic div or span to get the page to display the way you
want. If this is the case, don’t fret too much over it. We live in a transitional period, and CSS 3 will
give us much greater control of our documents. In the meantime, real-world needs often have to
come before theory. The trick is knowing when you have to make a compromise and if you are
doing it for the right reasons.

Microformats
Due to the scarcity of elements in HTML it’s very difficult to highlight certain types of information
such as people, places, or dates. To combat this, a group of developers decided to create a set of
standardized naming conventions and markup patterns to represent this data. These naming
conventions were based on existing data formats such as vCard and iCalendar and became
known as microformats. As an example, here are my contact details, marked up in the hCard
format.

CHAPTER 1

14

<div class="vcard">

 <p>Andy Budd

 Clearleft Ltd

 info@andybudd.com

 </p>

 <p class="adr">

 Brighton,

 England

 </p>

</div>

Microformats allow you to mark up data in a way that makes it accessible to other programs and
services. Some people have written scripts that can extract event information marked up in
hCalendar format and import it directly into a calendar application (see Figures 1-5 and 1-6).

Figure 1-5. The schedule for the UX London conference is marked up in hCalendar format.

http://andybudd.com
mailto:info@andybudd.com

SETTING THE FOUNDATIONS

15

Figure 1-6. This means that visitors can add the whole schedule to their calendar application at
the click of a button.

Other people have written plug-ins that allow Firefox to extract contact information marked up in
hCard format and send it to your mobile phone via Bluetooth (see Figure 1-7 and 1-8).

CHAPTER 1

16

Figure 1-7. The contact details on the Clearleft website are also marked up in hCard format.

Figure 1-8. Using Operator or the older Tails add-on in Firefox, you can import these contact
details directly into your address book.

SETTING THE FOUNDATIONS

17

There are currently 9 official microformats, along with a further 14 draft formats. These include

• hCalendar for dates, calendars and events

• hCard for people and organizations

• XFN for relationships between people

• hProduct for product descriptions (draft)

• hRecipe for ingredients and cooking instructions (draft)

• hReview for product and event reviews (draft)

• hAtom for episodic content like blog posts (draft)

Many large websites already support microformats. For instance, Google Maps uses the hCard
format for address information on its map search results. Similarly, Yahoo! supports microformats
on a number of properties including the popular Flickr photo-sharing site. In fact, Yahoo! released
26 million microformats into the wild when they used the hListing format in their Kelkoo shopping
search engine. It’s extremely easy to add microformatted data to your website, so it’s something I
recommend doing wherever possible.

We’re only just scratching the surface with what can be achieved with microformats. If you want
to learn more, check out “Microformats: Empowering Your Mark-up for Web 2.0” by John Allsopp.
Alternatively head over to http://microformats.org to view the official specifications.

Different versions of HTML and CSS
CSS comes in various versions, or levels, so it’s important to know which version to use. CSS 1
became a recommendation at the end of 1996 and contains very basic properties such as fonts,
colors, and margins. CSS 2 was released in 1998 and added advanced concepts such as floating
and positioning to the mix, as well as new selectors like the child, adjacent sibling, and universal
selectors.

Time moves very slowly at the World Wide Web Consortium (W3C), so while work on CSS 3
started before the turn of the millennium, the final release is still some way off. To help speed
development and browser implementation, CSS 3 has been broken down into modules that can
be released and implemented independently. CSS 3 contains some exciting new additions,
including an advanced layout module, brand new background properties, and a host of new
selectors. Some of these modules are scheduled for release as soon as the second half of 2009.
Sadly, we’ve been here before, and several modules have been on the verge of release only to
be pushed back into “last call” or “working draft” status, so it’s difficult to know how many will
actually make the grade. Hopefully, by 2011, we’ll see a number of these modules become official
recommendations. More worryingly, some modules don’t appear to have been started, while
others haven’t been updated for several years. Due to this glacial pace of development, it seems
unlikely the CSS 3 will ever be fully complete.

http://microformats.org

CHAPTER 1

18

The good news is that, despite the numerous delays, many browser vendors have already
implemented some of the more interesting parts of the CSS 3 specification. As such, it is possible
to start using many of these exciting selectors today,

Because of the expected length of time between the release of CSS 2 and CSS 3, work started in
2002 on CSS 2.1. This revision of CSS 2 intends to fix some errors and provide a much more
accurate picture of CSS browser implementation. CSS 2.1 is slowly nearing completion and is
thus the recommended version of CSS to use.

HTML 4.01 became a recommendation at the end of 1999 and is the version of HTML that most
people use. In January 2000 the W3C created an XML version of HTML 4.01 and named it
XHTML 1.0. The main difference between XHTML 1.0 and HTML 4.01 is that it follows the XML
coding conventions. This means that, unlike in regular HTML, all XHTML attributes must contain
quote marks, and all elements must be closed. So while the following code is legitimate in HTML,
it’s not in XHTML:

<h2>Peru Celebrates Guinea Pig festival

 <p>

 <p>Guinea pigs can be fried, roasted, or served in a casserole.

Instead, in XHTML 1.0 it would have to be written link this.

<h2>Peru Celebrates Guinea Pig festival</h2>

 <p></p>

 <p>Guinea pigs can be fried, roasted, or served in a casserole.</p>

XHTML 1.1 was an attempt to take XHTML even closer to XML. There was very little practical
difference between the two languages. However there was one big theoretical difference. While it
was still considered acceptable to serve up an XHTML 1.0 page as an HTML document, XHTML
1.1 pages were supposed to be sent to the browsers as if they were XML. This meant that if your
XHTML 1.1 page contained a single error, such as an unencoded ampersand, web browsers
weren’t supposed to display the page. This obviously isn’t ideal for most website owners, so
XHTML 1.1 never really took off.

There is still some debate as to whether you should serve up an XHTML 1.0 pages as if it were
HTML or if you’re better sticking with HTML 4.01. However, it’s clear that you shouldn’t be using
XHTML 1.1 unless you’re using the correct mime type and are happy for your page not to display
if it contains an error.

HTML 5 is relatively new, and as a draft specification is changing all the time. However, it has a
lot of momentum and several popular browsers have already started building in support. HTML 5
grew out the frustration developers had with the slow and archaic development of XHTML 2. So a
group of them decided to draft their own specification. This proved so successful that HTML 5
became an official W3C project, and the development of XHTML 2 was sidelined.

As mentioned previously, the goal of HTML5 was to produce a modern markup language that
better reflected the type of information being published on the web. So it introduces new
structural elements like header, nav, article, sections and footer. It also contains a host of new
form additions that should make building web applications a lot easier.

SETTING THE FOUNDATIONS

19

Document types, DOCTYPE switching, and browser modes
A document type definition (DTD) is a set of machine-readable rules that define what is and isn’t
allowed in a particular version of HTML or XML. Browsers are supposed to use these rules when
parsing a web page to check the validity of the page and act accordingly. Browsers know which
DTD to use, and hence which version of HTML you are using, by analyzing the page’s DOCTYPE
declaration.

A DOCTYPE declaration is a line or two of code at the start of your HTML document that
describes the particular DTD being used. In this example, the DTD being used is for XHTML 1.0
Strict:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

DOCTYPE declarations will typically, but not always, contain a URL to the specified DTD file. So
HTML5, for instance, doesn’t require a URL. Browsers tend to not read these files, choosing
instead to recognize common DOCTYPE declarations.

DOCTYPEs currently come in two flavors, strict and transitional. As the name suggests,
transitional DOCTYPEs are aimed at people transitioning from older versions of the language. As
such, the transitional versions of HTML 4.01 and XHTML 1.0 still allow the use of deprecated
elements like the font element. The strict versions of these languages ban the use of deprecated
elements to separate content from presentation.

Validation
As well as being semantically marked up, an HTML document needs to be written using valid
code. If the code is invalid, browsers will try to interpret the markup themselves, sometimes
getting it wrong. Worse still, if an XHTML document is being sent with the correct MIME type,
browsers that understand XML simply won’t display an invalid page. Because browsers need to
know which DTD to use in order to process the page correctly, a DOCTYPE declaration is
required for the page to validate.

You can check to see if your HTML is valid by using the W3C validator, a validator bookmarklet,
or a plug-in like the Firefox Web Developer Extension. Many HTML editors now have validators
built in, and you can even install a copy of the W3C validator locally on your computer. The
validator will tell you if your page validates, and if not, why not (see Figure 1-9).

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

CHAPTER 1

20

Figure 1-9. The microsoft.com homepage contains 176 HTML errors and 36 CSS errors.

Validation is important because it can help you track down bugs in your code. As such, it is a
good idea to get into the habit of validating early and often. However, validation isn’t an end unto
itself, and many otherwise good pages fail to validate due to small errors such as unencoded
ampersands, or because of legacy content. So although validation is important, in the real world,
a degree of common sense is required.

SETTING THE FOUNDATIONS

21

Various code validation tools are available. You can validate your site online by
going to http://validator.w3.org/ and entering your URL. However, if you
are going to validate often—which is a good idea—typing your URL each time
can become a little tedious. Instead, I use a handy validation bookmarklet, or
favelet, which is a small piece of JavaScript that can be stored in the
bookmarks or favorites folder in your browser. Clicking the bookmark will trigger
the JavaScript action. In the case of the validator bookmarklet, it runs the page
you are currently on through the W3C validator and displays the results. You
can find the validator bookmarklet along with many other handy web
development bookmarklets from http://favelets.com/.

If you use Firefox, you can download and install a wide variety of plug-ins.
Among the numerous validator plug-ins available, my personal favorite is the
Web Developers Extension plug-in. As well as allowing you to validate your
HTML and CSS, it enables you to do a wide variety of other useful tasks like
outlining various HTML elements, turning off stylesheets, and even editing
styles in the browser. The Firefox Web Developer Extension can be
downloaded from http://chrispederick.com/work/web-developer/ and is a
must-have for any CSS developer using Firefox. Another great tool is the
Firefox Validator Extension, which you can download from
http://users.skynet.be/mgueury/mozilla/.

There is also a developer toolbar for Internet Explorer 6 and 7, which can be
downloaded from http://tinyurl.com/7mnyh. Although it is not as feature rich
as the Firefox toolbar, it is still extremely useful. Internet Explorer 8 includes its
own set of developer tools built directly into the browser, as does Safari 4.

As well as being important for validation, browsers use DOCTYPE declarations for another
purpose.

Browser modes
When browser manufacturers started to create standards-compliant browsers, they wanted to
ensure backward compatibility. To accomplish this, they created two rendering modes: standards
mode and quirks mode. In standards mode, the browser renders a page according to the
specifications, and in quirks mode pages are displayed in a looser, more backward-compatible
fashion. Quirks mode typically emulates the behavior of older browsers such as Microsoft Internet
Explorer 4 and Netscape Navigator 4 to prevent older sites from breaking.

The most obvious example of the difference between these modes revolves around the Internet
Explorer (IE) on Windows proprietary box model. When Internet Explorer 6 debuted, the correct
box model was used in standards mode, while the older, proprietary box model was used in
quirks mode. To maintain backward compatibility with sites built for IE 5 and below, Opera 7 and
above also uses IE’s faulty box model in quirks mode.

http://validator.w3.org
http://favelets.com
http://chrispederick.com/work/web-developer
http://users.skynet.be/mgueury/mozilla
http://tinyurl.com/7mnyh

CHAPTER 1

22

Other differences in rendering are subtler and specific to certain browsers. However, they include
things like not requiring the # symbol for hex color values, assuming lengths without units in CSS
are pixels, and increasing the font size by one step when using keywords.

Mozilla and Safari have a third mode called “almost standards mode,” which is the same as
standards mode, except for some subtle differences in the way tables are handled.

You can tell what mode a page is rendering in by using the Web Developer Extension in Firefox.
A green tick will be displayed in the toolbar if the site is rendering in standards mode, while a red
cross shows that the page is being rendered in quirks mode. The development tools in Internet
Explorer 8 also show which mode the browser is rendering in.

DOCTYPE switching
The browser chooses which rendering method to use based on the existence of a DOCTYPE
declaration and the DTD being used. If an XHTML document contains a fully formed DOCTYPE,
it will normally be rendered in standards mode. For an HTML 4.01 document, a DOCTYPE
containing a strict DTD will usually cause the page to render in standards mode. A DOCTYPE
containing a transitional DTD and URI will also cause the page to render in standards mode,
while a transitional DTD without a URI will cause the page to render in quirks mode. A badly
formed or nonexistent DOCTYPE will cause both HTML and XHTML documents to be rendered
in quirks mode.

The effect of choosing a rendering mode based on the existence of a DOCTYPE is known as
DOCTYPE switching, or DOCTYPE sniffing. Not all browsers follow these exact rules, but they
give you a good idea of how DOCTYPE switching works. For a more complete list, the chart at
http://hsivonen.iki.fi/doctype/ shows the various rendering modes different browsers use
depending on the DOCTYPE declaration in use.

DOCTYPE switching is a hack used by browsers to distinguish legacy documents from more
standards-compliant ones. Despite writing valid CSS, if you choose the wrong DOCTYPE, your
pages will be rendered in quirks mode and behave in a buggy and unpredictable way. As such, it
is important to include a fully formed DOCTYPE declaration on every page of your site and
choose a strict DTD when using HTML.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!DOCTYPE html>

http://hsivonen.iki.fi/doctype
http://www.w3.org/TR/html4/strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

SETTING THE FOUNDATIONS

23

Many HTML editors will automatically add a DOCTYPE declaration for you. If you are creating an
XHTML document some older editors may also add an XML declaration before the DOCTYPE
declaration:

<?xml version="1.0" encoding="utf-8"?>

An XML declaration is an optional declaration used by XML files to define things such as the
version of XML being used and the type of character encoding. Unfortunately, IE 6 automatically
switches to quirks mode if the DOCTYPE declaration is not the first element on a page. This was
fixed in IE 7, but unless you are serving your pages as XML documents, it is best to avoid using
an XML declaration.

Summary
In this chapter, you learned all about how semantic naming conventions and meaningful markup
can make your code easier to read and maintain. You also learned the difference between IDs
and class names and which ones to use when. You know about the different versions of CSS and
HTML available and how the browsers decide how to handle those differences.

In the next chapter, you will recap some of the basic CSS selectors as well as learn about a host
of new CSS 3 selectors. You will learn all about specificity and the cascade, as well as how to
organize and plan your style sheets for easy maintenance.

CHAPTER 1

4

25

Chapter 2

Getting Your Styles to Hit the Target

A valid and well-structured document provides the foundations to which your styles are applied.
To be able to style a particular HTML element using CSS, you need to have some way of
targeting that element. In CSS the part of a style rule that does this is called the selector.

In this chapter, you will learn about

• Common selectors
• Advanced selectors
• New CSS 3 selectors
• The wonderful world of specificity and the cascade
• Planning and maintaining your style sheets
• How to comment your code

Common selectors
The most common kinds of selectors are type and descendant selectors. Type selectors are used
to target a particular type of element, such as a paragraph or a heading element. You do this by
simply specifying the name of the element you wish to style. Type selectors are sometimes also
referred to as element or simple selectors.

p {color: black;}

h1 {font-weight: bold;}

Descendant selectors allow you to target the descendants of a particular element or group of
elements. A descendant selector is indicated by a space between two other selectors. In this
example, only paragraph elements that are descendants of a blockquote will be indented, while
all other paragraphs will remain unchanged.

CHAPTER 2

26

blockquote p {padding-left: 2em;}

These two types of selector are great for applying generic styles that apply across the board. To
be more specific and target selected elements, you can use ID and class selectors. As the names
suggest, these selectors will target elements with the corresponding ID or class name. ID
selectors are identified using a hash character; class selectors are identified with a period. The
first rule in this example will make the text in the introductory paragraph bold, and the second rule
will make the date grey:

#intro {font-weight: bold;}

.date-posted {color: #ccc;}

<p id="intro">Happy Birthday Andy</p>

<p class="date-posted">24/3/2009</p>

As I mentioned previously, many CSS authors develop an overreliance on class and ID selectors.
If they want to style headlines one way in the main content area and another way in the
secondary content area, there is the tendency to create two classes and apply a class to each
headline. A much simpler approach is to use a combination of type, descendant, ID, and/or class
selectors:

#main-content h2 {font-size: 1.8em;}

#secondaryContent h2 {font-size: 1.2em;}

<div id="main-content">

 <h2>Articles</h2>

 ...

</div>

<div id="secondary-content">

 <h2>Latest news</h2>

 ...

</div>

This is a very simple and obvious example. However, you will be surprised how many elements
you can successfully target using just the four selectors discussed so far. If you find yourself
adding lots of extraneous classes to your document, it is probably a warning sign that your
document is not well structured. Instead, think about how these elements differ from each other.
Often, you will find that the only difference is where they appear on the page. Rather than give
these elements different classes, think about applying a class or an ID to one of their ancestors,
and then targeting them using a descendant selector.

GETTING YOUR STYLES TO HIT THE TARGET

27

Pseudo-classes
There are instances where you may want to style an element based on something other than the
structure of the document—for instance, the state of a link or form element. This can be done
using a pseudo-class selector.

/* makes all unvisited links blue */

a:link {color:blue;}

/* makes all visited links green */

a:visited {color:green;}

/* makes links red when hovered or activated.

focus is added for keyboard support */

a:hover, a:focus, a:active {color:red;}

/* makes table rows red when hovered over */

tr:hover {background-color: red;}

/* makes input elements yellow when focus is applied */

input:focus {background-color:yellow;}

:link and :visited are known as link pseudo-classes and can only be applied to anchor
elements. :hover, :active, and :focus are known as dynamic pseudo-classes and can
theoretically be applied to any element. Most modern browsers support this functionality.
Unsurprisingly, IE 6 only pays attention to the :active and :hover pseudo-classes when applied
to an anchor link, and ignores :focus completely. IE7 supports :hover on arbitrary elements but
ignores :active and :focus.

Last, it’s worth pointing out that pseudo-classes can be strung together to create more complex
behaviors, such as styling the hover effect on visited links different from those on unvisited links.

/* makes all visited linkes olive on hover */

a:visited:hover {color:olive;}

The universal selector
The universal selector is possibly one of the most powerful and least used of all the selectors.
The universal selector acts like a wild card, matching all the available elements. Like wild cards in
other languages, the universal selector is denoted by an asterisk. The universal selector is often
used to style every element on a page. For instance, you can remove the default browser
padding and margin on every element using the following rule:

CHAPTER 2

28

* {

 padding: 0;

 margin: 0;

}

When combined with other selectors, the universal selector can be used to style all the
descendants of a particular element or skip a level of descendants. You will see how this can be
put to practical effect a little later in this chapter.

Advanced selectors
CSS 2.1 and CSS 3 have a number of other useful selectors. Unfortunately, while most modern
browsers support these advanced selectors, older browsers like IE 6 do not. Luckily, CSS was
created with backward compatibility in mind. If a browser doesn’t understand a selector, it ignores
the whole rule. That way, you can apply stylistic and usability embellishments in more modern
browsers and not worry about it causing problems in older browsers. Just remember to avoid
using these more advanced selectors for anything critical to the function or layout of your site.

Child and adjacent sibling selectors
The first of these advanced selectors is the child selector. Whereas a descendant selector will
select all the descendants of an element, a child selector only targets the element’s immediate
descendants, or children. In the following example, the list items in the outer list will be given a
custom icon while list items in the nested list will remain unaffected (see Figure 2-1):

#nav>li {

 background: url(folder.png) no-repeat left top;

 padding-left: 20px;

}

<ul id="nav">

 Home

 Services

 Design

 Development

 Consultancy

 Contact Us

GETTING YOUR STYLES TO HIT THE TARGET

29

Figure 2-1. The child selector styles the children of the list but not its grandchildren.

The child selector is supported by IE 7 and above. However, there is a small bug in IE 7 that
causes problems if there are HTML comments between the parent and child.

It is possible to fake a child selector that works in IE 6 and below by using the universal selector.
To do this, you first apply to all of the descendants the style you want the children to have. You
then use the universal selector to override these styles on the children’s descendants. So to fake
the previous child selector example you would do this:

 #nav li {

 background: url(folder.png) no-repeat left top;

 badding-left: 20px;

}

#nav li * {

 background-image: none;

 padding-left: 0;

}

Sometimes, you may want to style an element based on its proximity to another element. The
adjacent sibling selector allows you to target an element that is preceded by another element that
shares the same parent. Using the sibling selector, you could make the first paragraph following a
top-level heading bold, gray, and slightly larger than the subsequent paragraphs (see Figure 2-2):

CHAPTER 2

30

h2 + p {

 font-size: 1.4em;

 font-weight: bold;

 color: #777;

}

<h2>Peru Celebrates Guinea Pig festival</h2>

 <p>The guinea pig festival in Peru is a one day event to celebrate

these cute local animals. The festival included a fashion show where

animals are dressed up in various amusing costumes.</p>

 <p>Guinea pigs can be fried, roasted, or served in a casserole. Around

65 million guinea pigs are eaten in Peru each year.</p>

Figure 2-2. The adjacent sibling selector can be used to style the first paragraph after a headline,
allowing you to do away with extraneous classes.

As with the child selector, this fails in IE 7 if comments appear between the elements you are
targeting.

Attribute selectors
As the name suggests, the attribute selector allows you to target an element based on the
existence of an attribute or the attribute’s value. This allows you to do some very interesting and
powerful things.

For example, when you hover over an element with a title attribute, most browsers will display a
tooltip. You can use this behavior to expand the meaning of things such as acronyms and
abbreviations:

GETTING YOUR STYLES TO HIT THE TARGET

31

<p>The term <acronym title="self-contained underwater breathing

apparatus">SCUBA</acronym> is an acronym rather than an abbreviation

as it is pronounced as a word.</p>

However, there is no way to tell that this extra information exists without hovering over the
element. To get around this problem, you can use the attribute selector to style acronym elements
with titles differently from other elements—in this case, by giving them a dotted bottom border.
You can provide more contextual information by changing the cursor from a pointer to a question
mark when the cursor hovers over the element, indicating that this element is different from most.

acronym[title] {

 border-bottom: 1px dotted #999;

}

acronym[title]:hover, acronym[title]:focus {

 cursor: help;

}

In addition to styling an element based on the existence of an attribute, you can apply styles
based on a particular value. For instance, sites that are linked to using a rel attribute of nofollow
gain no added ranking benefit from Google. The following rule displays an image next to such
links, possibly as a way of showing disapproval of the target site:

a[rel="nofollow"] {

 background: url(nofollow.gif) no-repeat right center;

 padding-right: 20px;

}

All modern browsers including IE 7 support these selectors. However, because IE 6 doesn’t
support attribute selectors, you could potentially use them to apply one style to IE 6 and a
different style to more capable browsers. For instance, Andy Clarke makes use of this technique
by presenting black and white version of his site to IE 6 (see Figure 2-3) and a color one to all
other browsers (see Figure 2-4).

CHAPTER 2

32

Figure 2-3. Andy Clarke serves up a black and white version of his site to IE 6 using attribute
selectors, among other techniques.

GETTING YOUR STYLES TO HIT THE TARGET

33

CHAPTER 2

34

Figure 2-4. More modern browsers get a color version.

#header {

 background: url(branding-bw.png) repeat-y left top;

}

[id="header"] {

 background: url(branding-color.png) repeat-y left top;

}

Some attributes can have more than one value, separated by spaces. The attribute selector
allows you to target an element based on one of those values. For instance, the XFN microformat
allows you to define the relationship you have with a site by adding keywords to the rel attribute
of an anchor link. So I can say that a particular site belongs to a work colleague of mine by
adding the co-worker keyword to the links in my blogroll. I can then show readers that I work with
that person by displaying a particular icon next to that co-worker’s name.

.blogroll a[rel~="co-worker"] {

 background: url(co-worker.gif) no-repeat left center;

}

<ul class="blogroll">

Jeremy Keith

Richard Rutter

John Hicks

Andy Clarke

http://adactio.com
http://clagnut.com
http://hicksdesign.com
http://stuffandnonsense.co.uk

GETTING YOUR STYLES TO HIT THE TARGET

35

The cascade and specificity
With even a moderately complicated style sheet, it is likely that two or more rules will target the
same element. CSS handles such conflicts through a process known as the cascade. The
cascade works by assigning an importance to each rule. Author style sheets are those written by
the site developers and are considered the most important. Users can apply their own styles via
the browser and these are considered the next most important. Finally, the default style sheets
used by your browser or user agent are given the least importance so you can always override
them. To give users more control, they can override any rule by specifying it as !important even
a rule flagged as !important by the author. This is to allow for specific accessibility needs such
as using a medium contrast user style sheet if you have a certain forms of dyslexia.

So the cascade works in the following order of importance:

• User styles flagged as !important
• Author styles flagged as !important
• Author styles
• User styles
• Styles applied by the browser/user agent

Rules are then ordered by how specific the selector is. Rules with more specific selectors
override those with less specific ones. If two rules are equally specific, the last one defined takes
precedence.

Specificity
To calculate how specific a rule is, each type of selector is assigned a numeric value. The
specificity of a rule is then calculated by adding up the value of each of its selectors.
Unfortunately, specificity is not calculated in base 10 but a high, unspecified, base number. This
is to ensure that a highly specific selector, such as an ID selector, is never overridden by lots of
less specific selectors, such as type selectors. However, if you have fewer than 10 selectors in a
specific selector, you can calculate specificity in base 10 for simplicity’s sake.

The specificity of a selector is broken down into four constituent levels: a, b, c, and d.

• If the style is an inline style, a equals 1.
• b equals the total number of ID selectors.
• c equals the number of class, pseudo-class, and attribute selectors.
• d equals the number of type selectors and pseudo-element selectors.

Using these rules, it is possible to calculate the specificity of any CSS selector. Table 2-1 shows a
series of selectors, along with their associated specificity.

CHAPTER 2

36

Table 2-1. Specificity examples

Selector Specificity Specificity in Base 10

Style="" 1,0,0,0 1000

#wrapper #content {} 0,2,0,0 200

#content .datePosted {} 0,1,1,0 110

div#content {} 0,1,0,1 101

#content {} 0,1,0,0 100

p.comment .dateposted {} 0,0,2,1 21

p.comment{} 0,0,1,1 11

div p {} 0,0,0,2 2

p {} 0,0,0,1 1

At first glance, all this talk of specificity and high but undefined based numbers may seem a little
confusing, so here’s what you need to know. Essentially, a rule written in a style attribute will
always be more specific than any other rule. A rule with an ID will be more specific than one
without an ID, and a rule with a class selector will be more specific than a rule with just type
selectors. Finally, if two rules have the same specificity, the last one defined prevails.

Specificity can be extremely important when fixing bugs, as you need to know which rules take
precedence and why. For instance, say you had this set of rules. What color do you think the two
headlines will be?

#content div#main-content h2 {

 color: gray;

}

#content #main-content>h2 {

 color: blue;

}

body #content div[id="main-content"] h2 {

 color: green;

}

#main-content div.news-story h2 {

 color: orange;

}

GETTING YOUR STYLES TO HIT THE TARGET

37

#main-content [class="news-story"] h2 {

 color: yellow;

}

div#main-content div.news-story h2.first {

 color: red;

}

<div id="content">

 <div id="main-content">

 <h2>Strange Times</h2>

 <p>Here you can read bizarre news stories from around the globe.</p>

 <div class="news-story">

 <h2 class="first">Bog Snorkeling Champion Announced Today</h2>

 <p>The 2008 Bog Snorkeling Championship was won by Conor Murphy

 with an impressive time of 1 minute 38 seconds.</p>

 </div>

 </div>

</div>

The answer, surprisingly, is that both headlines are gray. The first selector has the highest
specificity because it’s made up of two ID selectors. Some of the later selectors may look more
complicated, but as they only contain one ID, they will always lose out against the more specific
selectors.

If you ever come across a CSS rule that just doesn’t seem to be working, you could be suffering
from a specificity clash. Try making your selectors more specific by adding the ID of one of its
parents. If that fixes the problem, you’ll probably find that there is a more specific rule somewhere
in your style sheet overriding what you’re trying to do. If that’s the case, you’ll probably want to go
back through your code and clean up the specificity clashes to keep your code as lean as
possible.

Using specificity in your style sheets
Specificity is very useful when writing CSS, as it allows you to set general styles for common
elements and then override them for more specific elements. For instance, say you want most of
the text on your site black, except for your intro text, which you want gray. You could do
something like this:

p {color: black;}

p.intro {color: grey;}

CHAPTER 2

38

This is fine for smaller sites. However, on larger sites you will find more and more exceptions will
start to creep in. Maybe you want to have the introductory text on your news stories blue and the
introductory text on your home page on a gray background. Each time you create a more specific
style, you will probably need to override some of the general rules. This can lead to quite a bit of
extra code. It can also start to get very complicated, as one element may be picking up styles
from a variety of places.

To avoid too much confusion, I try to make sure my general styles are very general while my
specific styles are as specific as possible and never need to be overridden. If I find that I have to
override general styles several times, it’s simpler to remove the declaration that needs to be
overridden from the more general rules and apply it explicitly to each element that needs it.

Adding a class or an ID to the body tag
One interesting way to use specificity is to apply a class or an ID to the body tag. By doing this,
you can then override styles on a page-by-page or even a site-wide basis. For instance, if you
wanted all your news pages to have a specific layout, you could add a class name to the body
element and use it to target your styles:

body.news {

 /* do some stuff */

}

<body class="news">

 <p>My, what a lovely body you have.</p>

</body>

Sometimes, you’ll need to override these styles on a particular page, such as your news archive
page. In this case, you can add an ID to the body tag to target that specific page.

body.news {

 /* do some stuff */

}

body#archive {

 /* do some different stuff */

}

<body id="archive" class="news">

 <p>My, what a lovely body you have.</p>

</body>

GETTING YOUR STYLES TO HIT THE TARGET

39

Using a class for the type of page and an ID for the specific page gives you a huge amount of
control over the design and layout of your site. As such, this is one of my favorite techniques for
writing maintainable code.

Inheritance
People often confuse inheritance with the cascade. Although they seem related at first glance, the
two concepts are actually quite different. Luckily, inheritance is a much easier concept to grasp.
Certain properties, such as color or font size, are inherited by the descendants of the elements
those styles are applied to. For instance, if you were to give the body element a text color of
black, all the descendants of the body element would also have black text. The same would be
true of font sizes. If you gave the body a font size of 1.4 ems, everything on the page should
inherit that font size. I say should because IE for Windows and Netscape have problems
inheriting font sizes in tables. To get around this, you will either have to specify that tables should
inherit font sizes or set the font size on tables separately.

If you set the font size on the body, you will notice that this style is not picked up by any headings
on the page. You may assume that headings do not inherit text size. But it is actually the browser
default style sheet setting the heading size. Any style applied directly to an element will always
override an inherited style. This is because inherited styles have a null specificity.

Inheritance is very useful, as it lets you avoid having to add the same style to every descendant
of an element. If the property you are trying to set is an inherited property, you may as well apply
it to the parent element. After all, what is the point of writing this:

p, div, h1, h2, h3, ul, ol, dl, li {color: black;}

when you can just write this:

body {color: black;}

Just as sensible use of the cascade can help simplify your CSS, good use of inheritance can help
to reduce the number and complexity of the selectors in your code. It you have lots of elements
inheriting various styles, though, determining where the styles originate can become confusing.

CHAPTER 2

40

Figure 2-5. Firebug is a handy add-on to Firefox that allows you to interrogate various elements
to see where their rendered styles originate from.

Planning, organizing, and maintaining your style
sheets

The larger, more complicated, and graphically rich your sites become, the harder your CSS is to
manage. In this section, I will look at ways to help you manage your code, including grouping your
styles into logical sections and adding comments to make your code easier to read.

Applying styles to your document
You can add styles directly to the head of a document by placing them between style tags;
however, this is not a very sensible way to apply styles to a document. If you want to create
another page using the same styles, you would have to duplicate the CSS on the new page. If
you then wanted to change a style, you would have to do it in two places rather than one. Luckily,
CSS allows us to keep all our styles in one or more external style sheets. There are two ways to
attach external style sheets to a web page. You can link to them or you can import them:

GETTING YOUR STYLES TO HIT THE TARGET

41

<link href="/css/basic.css" rel="stylesheet" type="text/css" />

<style type="text/css">

<!--

@import url("/css/advanced.css");

-->

</style>

You do not have to confine importing to an HTML document. You can also import one style sheet
from another style sheet. This allows you to link to your basic style sheet from the HTML page
and then import your more complicated styles into that style sheet:

@import url(/css/layout.css);

@import url(/css/typography.css);

@import url(/css/color.css);

Breaking your CSS into multiple style sheets used to be a common approach and was the
method I recommended in the first edition of this book. However, recent browser benchmarking
has shown that importing style sheets can be slower than linking to them.

There are two other speed related problems when using multiple CSS files. First off, multiple files
will result in more packets being sent from the server, and it’s the number, rather than the
contents, of these packets that affects download time. Furthermore, browsers are only able to
download a limited number of concurrent files from the same domain at any one time. For older
browsers, this limit used to be a paltry two files, although modern browsers have upped this to
eight. So in an older browser, if you have three style sheets, you would have to wait for the first
two files to download before it starts downloading the third. Because of these reasons, a single,
well-structured CSS file can help improve download speeds considerably.

A single CSS file also allows you to keep all your code in one place. I used to recommend
splitting up your code for easy maintenance. However, it was always difficult to decide if a specific
declaration related to the layout or the typography of the site. Often, it could relate to both, and
you’d end up making arbitrary decisions where to put them. This approach also meant having to
keep multiple style sheets open and continually swapping between files. With features like code
folding being built into most modern CSS editors, it’s now much easier to edit a single page than
it used to be. So for these reasons, I tend to prefer a single CSS file over several smaller ones.
That being said, it really does depend on the site in question, so there are no hard and fast rules
here.

When writing your own style sheets, you will have a good idea how they are structured, what
problems you have encountered, and why things have been done a certain way. But if you come
back to that style sheet in six months, there is a good chance you will have forgotten much of this.
Additionally, you may need to hand your CSS to somebody else for implementation, or another
developer may have to edit your code in the future. It is therefore a good idea to comment your
code.

Adding comments in CSS is very simple. A CSS comment starts with /* and ends with */. This
type of commenting is known as C-style commenting, as it is the type of comment used in the C

CHAPTER 2

42

programming language. Comments can be single or multiline and can appear anywhere within
the code.

/* Body Styles */

body {

 font-size: 67.5%; /* Set the font size */

}

If your CSS files become very long, finding the style you want can be difficult. One way to speed
things up is to add a flag to each of your comment headers. A flag is simply an extra word
preceding your header text that does not naturally appear in your CSS files. A search for your flag
followed by the first couple of letters in your comment header will take you right to the part of the
file you’re looking for. So in this example, a search for “@group typ” will take you straight to the
typography section of your style sheet:

/* @group typography */

If you happen to use the OS X editor, CSS Edit, this format is used to create a simple yet
effective means of navigating your style sheet.

Structuring your code
It is a good idea to break your style sheets down into sensible chucks for ease of maintenance. At
Clearleft, we usually start with the most general styles first. These include styles that are applied
to the body tag and should be inherited by everything on the site. Next are any global resets we
may need, followed by links, headings, and other elements.

Once the general styles are covered, we start to get a little more specific and tackle our helper
styles. These are general classes that are used across the site and include things like forms and
error messages. We then move onto structural elements like layout and navigation.

As we move through the style sheet, we slowly layer styles on top of each other, getting more and
more specific as we go. Now that the page furniture is out of the way, we turn our attention to
page-specific components. Lastly we include any overrides and exceptions at the bottom of the
document. The whole document structure ends up looking like this:

• General styles

• Body styles
• Resets
• Links
• Headings
• Other elements

GETTING YOUR STYLES TO HIT THE TARGET

43

• Helper styles

• Forms
• Notifications and errors
• Consistent items

• Page structure

• Headers, footers, and navigation
• Layout
• Other page furniture

• Page components

• Individual pages

• Overrides

I use a large, stylized comment block to visually separate each section.

/* @group general styles

–––*/

/* @group helper styles

–––*/

/* @group page structure

–––*/

/* @group page components

–––*/

/* @group overrides

–––*/

Not everything naturally falls into a well-defined block, so some judgment is required. Keep in
mind that the more you can break up and objectify your code, the easier it is to understand and
the quicker you can find the rules you are looking for.

CHAPTER 2

44

Because my style sheets tend to have a similar structure, I save time by creating my own
precommented CSS templates to use on all my projects. You can save even more time by adding
a few common rules that you use in all of your sites, to create a sort of prototype CSS file. That
way, you will not have to reinvent the wheel each time you start a new project. A sample
prototype CSS file can be found in the code download for this book at cssmastery.com

Note to self
With large, complicated projects, it is often useful to annotate your CSS files with temporary
comments to aid development. These could be reminders of things you need to do before launch
or look-up tables for common values such as column widths.

If there are a lot of colors in your design, you will probably find yourself constantly flicking back
and forth between your graphics application and text editor to check hex values. This can be a
pain at times so several people have suggested the need for CSS variables. While this is an
interesting idea it would take CSS one step closer to a proper programming language and
potentially alienate non-programmers. As such, I tend to use a low-fi approach instead. All I do is
add a little color look-up table at the top of my style sheet so I can constantly refer to it during
development. Once I’m finished developing the page, I’ll usually strip this out.

/* Color Variables

@colordef #434343; dark gray

@colordef #f2f6e4; light green

@colordef #90b11f; dark green

@colordef #369; dark blue

*/

To make your comments more meaningful, you can use keywords to distinguish important
comments. I use @todo as a reminder that something needs to be changed, fixed, or revisited
later on, @bugfix to document a problem with the code or a particular browser, and @workaround
to explain a nasty workaround:

/* :@todo Remember to remove this rule before the site goes live */

/* @workaround: I managed to fix this problem in IE by setting a small

negative margin but it's not pretty */

/* @bugfix: Rule breaks in IE 5.2 Mac */

In programming terms, these keywords are called gotchas and can prove very helpful in the later
stages of development. In fact, all these terms form part of a project known as CSSDoc
(http://cssdoc.net) that aims to develop a standardized syntax for commenting your style
sheets.

http://cssdoc.net

GETTING YOUR STYLES TO HIT THE TARGET

45

Removing comments and optimizing your style sheets
Comments can increase the size of your CSS files quite considerably. Therefore, you may want
to strip comments from your live style sheets. Many HTML/CSS and text editors have a search-
and-replace option, making it pretty easy to remove comments from your code. Alternatively, you
could use one of several online CSS optimizers such as the one found at www.cssoptimiser.com
Not only does an optimizer remove comments, but it also strips out whitespace, helping to shave
off a few extra bytes from your code. If you do choose to strip comments from your live style
sheets, remember to retain a commented version for your production environment. The best way
of managing this process is to create a deployment script that strips comments automatically
when you make your changes go live. However, as this is an advanced technique, it’s probably
best left to fairly large, sophisticated sites.

Instead, the best way of reducing file size would be to enable server-side compression. If you are
using an Apache server, talk to your hosts about installing mod_gzip or mod_deflate. All modern
browsers can handle files compressed with GZIP, and decompress them on the fly. These
Apache modules will detect whether your browser can handle such files, and if it can, send a
compressed version. Server-side compression can reduce your HTML and CSS files by around
80 percent, reducing your bandwidth and making your pages much faster to download. If you
don’t have access to these Apache modules, you still may be able to compress your files by
following the tutorial found at http://tinyurl.com/8w9rp.

Style guides
Most websites will have more than one person working on them, and larger sites can involve
several teams all working on different aspects of the site. It is possible that programmers, content
managers, and other front-end developers may need to understand how elements of your code
and design function. Therefore, it is a very good idea to create some form of style guide.

A style guide is a document, web page, or microsite that explains how the code and visual design
of a site is pieced together. At its most basic level a style guide should outline the general design
guidelines like the appropriate treatment for headlines and other typographic elements, how the
grid structure works and what color pallet to use. A good style guide will also look at the treatment
of repeating elements like articles, news items, and notifications to define how they should and
shouldn’t be implemented. More detailed style guides may even include information on coding
standards like the version of XHTML/CSS used, the chosen accessibility level, browser support
details, and general coding best practices (see Figure 2-6).

http://www.cssoptimiser.com
http://tinyurl.com/8w9rp

CHAPTER 2

46

Figure 2-6. An example style guide

Style guides are a great way of handing a project over to those responsible for maintaining or
implementing the site. By setting down some simple guidelines, you can help ensure the site
develops in a controlled way, and help lessen the fragmentation of your styles over time. Style
guides are also a great way of introducing new employees or contractors to an unfamiliar and
potentially complicated system.

Unfortunately, keeping your style guide up-to-date can take a considerable amount of effort so
they often go out of sync with the live site very quickly. Because of this we prefer to use a form of
living style guide that we’ve called a “pattern portfolio” (see Figure 2-7).

A pattern portfolio is a page or series of pages that use the live style sheets to display every
possible permutation and combination of styles on a site, from heading levels and text styles
through to specific content and layout types. These pages can provide your back-end and front-
end developers with an extremely valuable resource, allowing them to build page combinations
that haven’t even been conceived of yet. As they draw from the live styles, they can also act as a
useful form of regression testing, allowing you to check that any changes to your CSS haven’t
caused and untoward problems.

GETTING YOUR STYLES TO HIT THE TARGET

47

Figure 2-7. An extract from the pattern portfolio of the WWF International site. The actual page is
around five times the length and contains every typographic and layout permutation allowed on
the site.

CHAPTER 2

48

Summary
In this chapter, you have reacquainted yourself with the common CSS 2.1 selectors as well as
learned about some powerful new CSS 3 selectors. You now have a better understanding of how
specificity works and how you can use the cascade to structure your CSS rules and help them hit
the target. You have also learned how to comment and structure your style sheets for
maintainability.

In the next chapter, you will learn about the CSS box model, how and why margins collapse, and
how floating and positioning really works.

3

CHAPTER 1

4

51

Chapter 3

Visual Formatting Model Overview

Three of the most important CSS concepts to grasp are floating, positioning, and the box model.
These concepts control the way elements are arranged and displayed on a page, forming the
basis of CSS layout. If you are used to controlling layout with tables, these concepts may seem
strange at first. In fact, most people will have been developing sites using CSS for some time
before they fully grasp the intricacies of the box model, the difference between absolute and
relative positioning, and how floating and clearing actually work. Once you have a firm grasp of
these concepts, developing sites using CSS becomes that much easier.

In this chapter you will learn about

• The intricacies and peculiarities of the box model

• How and why margins collapse

• The difference between absolute and relative positioning

• How floating and clearing work

Box model recap
The box model is one of the cornerstones of CSS and dictates how elements are displayed and,
to a certain extent, how they interact with each other. Every element on the page is considered to
be a rectangular box made up of the element’s content, padding, border, and margin (see Figure
3-1).

CHAPTER 3

52

Figure 3-1. An illustration of the box model

Padding is applied around the content area. If you add a background to an element, it will be
applied to the area formed by the content and padding. As such, padding is often used to create a
gutter around content so that it does not appear flush to the side of the background. Adding a
border applies a line to the outside of the padded area. These lines come in various styles such
as solid, dashed, or dotted. Outside the border is a margin. Margins are transparent and cannot
be seen. They are generally used to control the spacing between elements.

CSS 2.1 also contains the outline property. Unlike the border property,
outlines are drawn over the top of an element’s box, so they don’t affect its size
or positioning. Because of this, outlines can be useful when fixing bugs,
because they won’t alter the layout of your page. Outlines are supported by
most modern browsers including IE 8 but are not supported in IE 7 and below.

Padding, borders, and margins are optional and default to zero. However, many elements will be
given margins and padding by the user-agent style sheet. You can override these browser styles
by setting the element’s margin or padding back to zero. You can do this on a case-by-case basis
or for every element by using the universal selector:

* {

 margin: 0;

 padding: 0;

}

Just remember that this technique is fairly indiscriminant, so it can have adverse effects on
elements like the option element. As such it’s probably safer to zero down the padding and
margins explicitly using a global reset.

VISUAL FORMATTING MODEL OVERVIEW

53

In CSS, width and height refer to the width and height of the content area. Adding padding,
borders, and margins will not affect the size of the content area but will increase the overall size
of an element’s box. If you wanted a box with a 10-pixel margin and a 5-pixel padding on each
side to be 100 pixels wide, you would need to set the width of the content to be 70 pixels (see
Figure 3-2):

#myBox {

 margin: 10px;

 padding: 5px;

 width: 70px;

}

Figure 3-2. The correct box model

Padding, borders, and margins can be applied to all sides of an element or individual sides.
Margins can also be given a negative value and can be used in a variety of techniques.

IE and the box model
Unfortunately, older versions of Internet Explorer, along with IE 6 in quirks mode, use their own,
nonstandard box model. Instead of measuring just the width of the content, these browsers take
the width property as the sum of the width of the content, padding, and borders. This actually
makes a lot of sense, because in the real-world boxes have a fixed size, and the padding goes on

CHAPTER 3

54

the inside. The more padding you add, the less room there will be for the content. However,
despite the logic, the fact that these versions of IE disregard the specification can cause
significant problems. For instance, in the previous example the total width of the box would only
be 90 pixels in IE 5.x. This is because IE 5.x will consider the 5 pixels of padding on each side as
part of the 70-pixel width, rather than in addition to it (see Figure 3-3).

The CSS 3 box-sizing property allows you to define which box model to use,
although this feature is unlikely to be widely used except in some very specific
circumstances.

Figure 3-3. IE’s proprietary box model can cause elements to be smaller than intended.

Luckily, there are several ways you can tackle this issue, the details of which can be found in
Chapter 9. However, by far the best solution is to avoid the problem altogether. You can do this
by never adding padding to an element with a defined width. Instead, try adding padding or
margins to the element’s parent or children.

Margin collapsing
Margin collapsing is a relatively simple concept. In practice, however, it can cause a lot of
confusion when you’re laying out a web page. Put simply, when two or more vertical margins
meet, they will collapse to form a single margin. The height of this margin will equal the height of
the larger of the two collapsed margins.

VISUAL FORMATTING MODEL OVERVIEW

55

When two elements are above one another, the bottom margin of the first element will collapse
with the top margin of the second element (see Figure 3-4).

Figure 3-4. Example of an element’s top margin collapsing with the bottom margin of the
preceding element

When one element is contained within another element, assuming there is no padding or border
separating margins, their top and/or bottom margins will also collapse together (see Figure 3-5).

Figure 3-5. Example of an element’s top margin collapsing with the top margin of its parent
element

CHAPTER 3

56

It may seem strange at first, but margins can even collapse on themselves. Say you have an
empty element with a margin but no border or padding. In this situation, the top margin is
touching the bottom margin, and they collapse together (see Figure 3-6).

Figure 3-6. Example of an element’s top margin collapsing with its bottom margin

If this margin is touching the margin of another element, it will itself collapse (see Figure 3-7).

Figure 3-7. Example of an empty element’s collapsed margin collapsing with another empty
element’s margins

This is why a series of empty paragraph elements take up very little space, as all their margins
collapse together to form a single small margin.

Margin collapsing may seem strange at first, but it actually makes a lot of sense. Take a typical
page of text made up of several paragraphs (see Figure 3-8). The space above the first
paragraph will equal the paragraph’s top margin. Without margin collapsing, the space between
all subsequent paragraphs will be the sum of their two adjoining top and bottom margins. This
means that the space between paragraphs will be double the space at the top of the page. With
margin collapsing, the top and bottom margins between each paragraph collapse, leaving the
spacing the same everywhere.

VISUAL FORMATTING MODEL OVERVIEW

57

Figure 3-8. Margins collapse to maintain consistent spacing between elements.

Margin collapsing only happens with the vertical margins of block boxes in the normal flow of the
document. Margins between inline boxes, floated, or absolutely positioned boxes never collapse.

Positioning recap
Now that you are familiar with the box model, let’s take a look at the visual formatting and
positioning models. Understanding the nuances of both of these models is vitally important, as
together they control how every element is arranged on a page.

The visual formatting model
People often refer to elements such as p, h1, or div as block-level elements. This means they are
elements that are visually displayed as blocks of content, or block boxes. Conversely, elements
such as strong and span are described as inline elements because their content is displayed
within lines as inline boxes.

It is possible to change the type of box generated by using the display property. This means you
can make an inline element such as an anchor behave like a block-level element by setting its
display property to block. It is also possible to cause an element to generate no box at all by
setting its display property to none. The box, and thus all of its content, is no longer displayed
and takes up no space in the document.

There are three basic positioning schemes in CSS: normal flow, floats, and absolute positioning.
Unless specified, all boxes start life being positioned in the normal flow. As the name suggests,
the position of an element’s box in the normal flow will be dictated by that element’s position in
the HTML.

CHAPTER 3

58

Block-level boxes will appear vertically one after the other; the vertical distance between boxes is
calculated by the boxes’ vertical margins.

Inline boxes are laid out in a line horizontally. Their horizontal spacing can be adjusted using
horizontal padding, borders, and margins (see Figure 3-9). However, vertical padding, borders,
and margins will have no effect on the height of an inline box. Similarly, setting an explicit height
or width on an inline box will have no effect either. The horizontal box formed by a line is called a
line box, and a line box will always be tall enough for all the line boxes it contains. There is
another caveat, though—setting the line height can increase the height of this box. Because of
these reasons, the only way you can alter the dimensions of an inline box is by changing the line
height or horizontal borders, padding, or margins.

Figure 3-9. Inline elements within a line box

Helpfully, CSS2.1 allows you to set the display property of an element to be inline-block. As
the name suggests, this declaration makes the element line up horizontally as if it were an inline
element. However, the contents of the box behave as though the box were a block-level,
including being able to explicitly set widths, heights, vertical margins, and padding. Historically,
this property has been poorly supported; hence, it’s relative obscurity. Thankfully, inline-block is
now supported by Firefox 3.0 and above, IE 8, and the latest versions of Safari and Opera, so I
think we are going to see inline-block being used to create more interesting layouts over the
next few years.

In the same way that HTML elements can be nested, boxes can contain other boxes. Most boxes
are formed from explicitly defined elements. However, there is one situation where a block-level
element is created even if it has not been explicitly defined—when you add some text at the start
of a block-level element like a div. Even though you have not defined the text as a block-level
element, it is treated as such:

VISUAL FORMATTING MODEL OVERVIEW

59

<div>

some text

<p>Some more text</p>

</div>

In this situation, the box is described as an anonymous block box, since it is not associated with a
specifically defined element.

A similar thing happens with the lines of text inside a block-level element. Say you have a
paragraph that contains three lines of text. Each line of text forms an anonymous line box. You
cannot style anonymous block or line boxes directly, except through the use of the :first-line
pseudo element, which obviously has limited use. However, it is useful to understand that
everything you see on your screen creates some form of box.

Relative positioning
Relative positioning is a fairly easy concept to grasp. If you relatively position an element, it will
stay exactly where it is. You can then shift the element relative to its starting point by setting a
vertical or horizontal position. If you set the top position to be 20 pixels, the box will appear 20
pixels below the top of its original position. Setting the left position to 20 pixels will create a 20-
pixel space on the left of the element, moving the element to the right (see Figure 3-10).

#myBox {

 position: relative;

 left: 20px;

 top: 20px;

}

Figure 3-10. Relatively positioning an element

With relative positioning, the element continues to occupy the original space, whether or not it is
offset. As such, offsetting the element can cause it to overlap other boxes.

CHAPTER 3

60

Absolute positioning
Relative positioning is actually considered part of the normal flow-positioning model, as the
position of the element is relative to its position in the normal flow. By contrast, absolute
positioning takes the element out of the flow of the document, thus taking up no space. Other
elements in the normal flow of the document will act as though the absolutely positioned element
was never there (see Figure 3-11).

Figure 3-11. Absolutely positioning an element

An absolutely positioned element is positioned in relation to its nearest positioned ancestor. If the
element has no positioned ancestors, it will be positioned in relation to the initial containing block.
Depending on the user agent, this will either be the canvas or the HTML element.

As with relatively positioned boxes, an absolutely positioned box can be offset from the top,
bottom, left, or right of its containing block. This gives you a great deal of flexibility. You can
literally position an element anywhere on the page.

The main problem people have with positioning is remembering which type of
positioning is which. Relative positioning is “relative” to the element’s initial
position in the flow of the document, whereas absolute positioning is “relative”
to nearest positioned ancestor or, if one doesn’t exist, the initial container block.

Because absolutely positioned boxes are taken out of the flow of the document, they can overlap
other elements on the page. You can control the stacking order of these boxes by setting a
property called z-index. The higher the z-index, the higher up the box appears in the stack.

Positioning an absolutely positioned element in relation to its nearest positioned ancestor allows
you to do some very interesting things. For instance, say you wanted to align a paragraph of text
at the bottom right of a large box. You could simply give the container box a relative position and
then absolutely position the paragraph in relation to this box:

VISUAL FORMATTING MODEL OVERVIEW

61

#branding {

 width: 70em;

 height: 10em;

 position: relative;

}

#branding .tel {

 position: absolute;

 right: 1em;

 bottom: 1em;

 text-align: right;

}

<div id="branding">

<p class="tel">Tel: 0845 838 6163</p>

</div>

Absolutely positioning a box in relation to a relatively positioned ancestor works
well in most modern browsers. However, there is a bug in IE 5.5 and IE 6 on
Windows. If you try to set the position of the absolutely positioned box relative
to the right or bottom of the relatively positioned box, you need to make sure
the relatively positioned box has some dimensions set. If not, IE will incorrectly
position the box in relation to the canvas instead. You can read more about this
bug and possible fixes in Chapter 9. The simple solution is to set the width and
height of your relative box to avoid this problem.

Absolute positioning can be a useful tool when laying out a page, especially if it is done using
relatively positioned ancestors. It is entirely possible to create a design solely using absolute
positioning. For this to work, these elements need to have fixed dimensions, so you can position
them where you want without the risk of overlapping.

Because absolutely positioned elements are taken out of the flow of the document, they have no
effect on boxes in the normal flow. If you were to enlarge an absolutely positioned box—by
increasing the font size, for instance—the surrounding boxes wouldn’t reflow. As such, any
change in size can ruin your finely tuned layout by causing the absolutely positioned boxes to
overlap.

Fixed positioning
Fixed positioning is a subcategory of absolute positioning. The difference is that a fixed element’s
containing block is the viewport. This allows you to create floating elements that always stay at

CHAPTER 3

62

the same position in the window. An example of this is shown at the old snook.ca website (see
Figure 3-12). The weblog comment form has been given a fixed position to keep it anchored at
the same place on screen when the page is scrolled. This really helps improve usability, and you
don’t have to scroll all the way to the bottom of the page to leave a comment.

Figure 3-12. At the old snook.ca website, the comment field on the right side of the screen used
a fixed position to stay at the same position in the viewport.

Unfortunately, IE 6 and below do not support fixed positioning. IE 7 partially supports this
property, but the implementation is fairly buggy. To get around these problems, Jonathan Snook
used JavaScript to replicate the effect in IE.

Floating
The last visual formatting model is the float model. A floated box can either be shifted to the left or
the right until its outer edge touches the edge of its containing box or another floated box.
Because floated boxes aren’t in the normal flow of the document, block boxes in the regular flow
of the document behave as if the floated box wasn’t there.

As shown in Figure 3-13, when you float Box 1 to the right, it’s taken out of the flow of the
document and moved to the right until its right edge touches the right edge of the containing
block.

Figure 3-13. Example of an element being floated right

VISUAL FORMATTING MODEL OVERVIEW

63

In Figure 3-14, when you float Box 1 to the left, it is taken out of the flow of the document and
moved left until its left edge touches the left edge of the containing block. Because it is no longer
in the flow, it takes up no space and actually sits on top of Box 2, obscuring it from view. If you
float all three boxes to the left, Box 1 is shifted left until it touches its containing box, and the other
two boxes are shifted left until they touch the preceding floated box.

Figure 3-14. Example of elements being floated left

If the containing block is too narrow for all of the floated elements to fit horizontally, the remaining
floats will drop down until there is sufficient space (see Figure 3-15). If the floated elements have
different heights, it is possible for floats to get “stuck” on other floats when they drop down.

Figure 3-15. If there is not enough available horizontal space, floated elements will drop down
until there is.

Line boxes and clearing
You learned in the previous section that floating an element takes it out of the flow of the
document where it no longer exerts an effect on non-floated items. Actually, this isn’t strictly true.
If a floated element is followed by an element in the flow of the document, the element’s box will
behave as if the float didn’t exist. However, the textural content of the box retains some memory
of the floated element and moves out of the way to make room. In technical terms, a line box next
to a floated element is shortened to make room for the floated element, thereby flowing around
the floated box. In fact, floats were created to allow text to flow around images (see Figure 3-16).

CHAPTER 3

64

Figure 3-16. Line boxes shorten when next to a float.

To stop line boxes flowing around the outside of a floated box, you need to apply a clear property
to the element that contains those line boxes. The clear property can be left, right, both, or
none, and it indicates which side of the box should not be next to a floated box. I always used to
think that the clear property was some magic flag that automatically negated the previous float.
However, the reality is much more interesting. When you clear an element, the browser adds
enough margin to the top of the element to push the element’s top border edge vertically down,
past the float (see Figure 3-17).

Figure 3-17. Clearing an element’s top margin to create enough vertical space for the preceding
float

As you’ve seen, floated elements are taken out of the flow of the document and have no effect on
surrounding elements. However, clearing an element essentially clears a vertical space for all the
preceding floated elements.

This can be a useful layout tool as it allows surrounding elements to make space for floated
elements. This solves the problem you saw earlier with absolute positioning, where changes in
vertical height do not affect surrounding elements and can break your design.

VISUAL FORMATTING MODEL OVERVIEW

65

Let’s have a look at floating and clearing in a little more detail. Say you have a picture that you
want to float to the left of a block of text. You want this picture and text to be contained in another
element with a background color and border. You would probably try something like this:

.news {

 background-color: gray;

 border: solid 1px black;

}

.news img {

 float: left;

}

.news p {

 float: right;

}

<div class="news">

<p>Some text</p>

</div>

However, because the floated elements are taken out of the flow of the document, the wrapper
div takes up no space. How do you visually get the wrapper to enclose the floated element? You
need to apply a clear somewhere inside that element (see Figure 3-18). Unfortunately, as there
are no existing elements in the example to clear, you could add an empty element under the last
paragraph, and clear that.

CHAPTER 3

66

Figure 3-18. Because floats take up no space, they are not enclosed by container elements. The
addition of an empty clearing element forces the container element to enclose the floats.

.news {

 background-color: gray;

 border: solid 1px black;

}

.news img {

 float: left;

}

.news p {

 float: right;

}

.clear {

 clear: both;

}

VISUAL FORMATTING MODEL OVERVIEW

67

<div class="news">

<p>Some text</p>

<br class="clear" />

</div>

This gets the result we want, but at the expense of adding extraneous code to our markup. Often
there will be an existing element you can apply the clear to, but sometimes you may have to bite
the bullet and add meaningless markup for the purpose of layout.

Instead of clearing the floated text and image, you could choose to float the container div as well:

.news {

 background-color: gray;

 border: solid 1px black;

 float: left;

}

.news img {

 float: left;

}

.news p {

 float: right;

}

<div class="news">

<p>Some text</p>

</div>

This creates the desired result. Unfortunately, the next element is now going to be affected by the
float. To solve this problem, some people choose to float nearly everything in a layout and then
clear those floats using an appropriate meaningful element, often the site footer. This helps
reduce or eliminate the need for extraneous markup. However, floating can be complicated, and
some older browsers may choke on heavily floated layouts. As such, many people prefer to add
that extra bit of markup.

The overflow property defines how an element is supposed to behave if the enclosed content is
too big for the stated dimensions. By default the content will spill out of the box, overflowing into
the neighboring space. One useful side-effect of applying an overflow property of hidden or auto

CHAPTER 3

68

is that it will automatically clear any floats contained within. So this can be a useful way of
clearing an element without adding any extra markup. This method is not appropriate in all
situations, since setting the box’s overflow property will affect how it behaves. More specifically,
this method can force scroll bars or clip content under certain circumstances.

Then too, some people have taken to clearing floats using CSS-generated content or JavaScript.
The basic concept for both methods is the same. Rather than add a clearing element directly to
the markup, you add it to the page dynamically. For both methods, you need to indicate where
the clearing element goes, and this is usually done with the addition of a class name:

<div class="news clear">

<p Some text</p>

</div>

Using the CSS method, you use the :after pseudo-class in combination with the content
declaration to add new content at the end of the specified existing content. In this case, I’m
adding a period, as it is a fairly small and unobtrusive character. You don’t want the new content
to take up any vertical space or be displayed on the page, so you need to set height to 0 and
visibility to hidden. Because cleared elements have space added to their top margin, the
generated content needs to have its display property set to block. Once this is done, you can
then clear your generated content:

.clear:after {

 content: ".";

 height: 0;

 visibility: hidden;

 display: block;

 clear: both;

}

This method works in most modern browsers but fails in Internet Explorer 6 and below. Various
workarounds are available, many of which are documented at www.positioniseverything.net/
easyclearing.html. The most common of these involves using the Holly Hack (see Chapter 8) to
trick IE 5 and 6 into applying “Layout” (see Chapter 9) and incorrectly clearing the floats.

.clear {

display: inline-block;

}

/* Holly Hack Targets IE Win only */

* html .clear {height: 1%;}

.clear {display: block;}

/* End Holly Hack */

http://www.positioniseverything.net

VISUAL FORMATTING MODEL OVERVIEW

69

However, due to its complexity this method may not be suitable for everybody so has been
included primarily for historical reasons.

An explanation of the JavaScript method is beyond the scope of this book but is worth a brief
mention. Unlike the previous method, the JavaScript method works on all major browsers when
scripting is turned on. However, if you use this method, you need to make sure that the content is
still readable when scripting is turned off.

Summary
In this section, you learned about the box model and how padding, margin, width, and height
affect the dimensions of a box. You also learned about the concept of margin collapsing and how
this can affect your layouts. You were introduced to the three formatting models in CSS: normal
flow, absolute positioning, and floating. You learned the difference between inline and block
boxes, how to absolutely position an element within a relatively positioned ancestor, and how
clearing really works.

Now that you are armed with this knowledge, let’s start putting it to good use. In the following
chapters of this book, you will be introduced to a number of core CSS concepts and you’ll see
how they can be used to create a variety of useful and practical techniques. So open your favorite
text editor, and let’s get coding.

CHAPTER 1

4

71

Chapter 4

Using Backgrounds for Effect

Now that you are all up to speed with the theory, let’s start putting it into practice. Today’s Web is
a very visual medium. The humble image tag has allowed web designers to turn dull and
uninspiring documents into graphically rich experiences. Graphic designers quickly seized on the
image tag (originally intended as a way to add visual content to a website) as a way of visually
embellishing a page. In fact, if it wasn’t for the invention of the image tag, the profession of web
designer may never have evolved.

Unfortunately, we’ve used the image tag to clutter our pages with purely presentational images.
Luckily, CSS gives us the ability to display an image on a page without it being part of the
markup. This is achieved by adding an image as a background to an existing element. Through a
series of practical examples, this chapter will show you how background images can be used to
create a variety of interesting and useful techniques.

In this chapter, you will learn about

• Fixed- and flexible-width rounded-corner boxes

• The sliding doors technique

• Multiple background images and the border-radius property

• CSS drop shadows

• Opacity and RGBa

• Getting PNGs to work in older versions of Internet Explorer

• Parallax scrolling

• Image replacement

CHAPTER 4

72

Background image basics
Applying a background image is easy. Say you want your website to have a nice tiled
background. You can simply apply the image as a background to the body element:

body {

 background-image:url(/img/pattern.gif);

}

The default browser behavior is to repeat background images horizontally and vertically so that
the image tiles across the whole of the page. For more control, you can choose whether your
background image tiles vertically, horizontally, or not at all.

Gradients are very fashionable at the moment, so you may want to apply a vertical gradient to
your page instead. To do this, create a tall but narrow gradient graphic. You can then apply this
graphic to the body of the page and let it tile horizontally.

body {

 background-image: url(/img/gradient.gif);

 background-repeat: repeat-x;

}

Because the gradient has a fixed height, it will stop abruptly if the content of the page is longer
than the height of the image. You could choose to create a really long image, possibly one that
fades to a fixed color. However, it is always difficult to predict how long a page will become.
Instead, simply add a background color as well. Background images always sit on the top of the
background color, so when the image runs out the color will be displayed. If you choose a
background color that is the same as the bottom of the gradient, the transition between image
and background color will be seamless.

body {

 background-image: url(/img/gradient.gif);

 background-repeat: repeat-x;

 background-color: #ccc;

}

Tiling images can be useful in some situations. However, most of the time, you will want to add
nontiled images to your page. For instance, say you want your web page to start with a large
branding image. You could simply add the image directly into the page, and in many situations,
this would be the correct thing to do. Yet if the image contains no information and is purely
presentational, you may want to separate the image from the rest of your content. You can do this
by creating a hook for the image in your HTML and applying the image using CSS. In the
following example, I have added an empty div to the markup and given it an ID of branding. You
can then set the dimensions of the div to be the same as the branding image, apply it as a
background, and tell it not to repeat.

USING BACKGROUNDS FOR EFFECT

73

#branding {

 width: 700px;

 height: 200px;

 background-image:url(/img/branding.gif)

 background-repeat: no-repeat;

}

Last, it is possible to set the position of your background image. Say you want to add a bullet to
every headline on your site, as shown in Figure 4-1. You could do something like this:

h1 {

 padding-left: 30px;

 background-image: url(/img/bullet.gif);

 background-repeat: no-repeat;

 background-position: left center;

}

Figure 4-1. Creating a bullet using a background image

The last two keywords indicate the positioning of the image. In this case, the image will be
positioned to the left of the element and vertically centered. As well as using keywords, you can
set a background image’s position using units such as pixels or percentages.

If you set a background position using pixels or ems, the top-left corner of the image is positioned
from the top-left corner of the element by the specified number of pixels. So if you were to specify
a vertical and horizontal position of 20 pixels, the top-left corner of the image will appear 20 pixels
from the top-left corner of the element. However, background positioning using percentages
works slightly differently. Rather than positioning the top-left corner of the background image,
percentage positioning uses a corresponding point on the image. So if you set a vertical and
horizontal position of 20 percent, you are actually positioning a point 20 percent from the top left
of the image, 20 percent from the top left of the parent element (see Figure 4-2).

CHAPTER 4

74

Figure 4-2. When positioning background images using pixels, the top-left corner of the image is
used. When positioning using percentages, the corresponding position on the image is used.

If you want to position the previous bullet example using percentages instead of keywords, setting
the vertical position to 50 percent would vertically center the bullet image:

h1 {

 padding-left: 30px;

 background-image: url(/img/bullet.gif);

 background-repeat: no-repeat;

 background-position: 0 50%;

}

The specification says that you are not supposed to mix units such as pixels or percentages with
keywords. This seems like a nonsensical rule, and it’s one that many modern browsers
deliberately ignore. However, mixing units and keywords fails to work on certain browsers and will
most likely invalidate your CSS. As such, it is best not to mix units with keywords at this time.

To save time, CSS also provides a shorthand version of the background property. This allows you
to set all the properties in one go, rather than having to set them all individually.

h1 {

 background: #ccc url(/img/bullet.gif) no-repeat left center;

}

While background images are a simple concept to grasp, they form the basis of many advanced
CSS techniques.

Rounded-corner boxes
One of the first criticisms leveled against CSS-based designs was that they were very square and
boxy. To get around this, people started creating designs that incorporated more organic curved

USING BACKGROUNDS FOR EFFECT

75

shapes. Rounded-corner boxes very quickly became one of the most sought-after CSS
techniques around. There are various ways of creating rounded-corner boxes. Each approach
has its strengths and weaknesses, and the one you choose depends largely on your
circumstances.

Fixed-width rounded-corner boxes
Fixed-width rounded-corner boxes are the easiest to create. They require only two images: one
for the top of the box and one for the bottom. For example, say you want to create a box style like
the one in Figure 4-3.

Figure 4-3. A simple rounded-corner box style

The markup for the box looks something like this:

<div class="box">

 <h2>Headline</h2>

 <p>Content</p>

</div>

In your favorite graphics package, you need to create two images like those in Figure 4-4: one for
the top of the box and one for the bottom. The code and images for this and all the other
examples in this book can be downloaded from www.cssmastery.com or www.friendsofed.com.

Figure 4-4. The top and bottom curve graphics

You then apply the top image to the heading element and the bottom image to the bottom of the
box div. Because this box style just has a solid fill, you can create the body of the box by adding
a background color to the box div.

.box {

 width: 418px;

http://www.cssmastery.com
http://www.friendsofed.com

CHAPTER 4

76

 background: #effce7 url(/img/bottom.gif) no-repeat left bottom;

}

.box h2 {

 background: url(/img/top.gif) no-repeat left top;

}

You will not want your content to butt up against the sides of the box, so you also need to add
some padding to the elements inside the div:

.box {

 width: 418px;

 background: #effce7 url(/img/bottom.gif) no-repeat left bottom;

 padding-bottom: 1px;

}

.box h2 {

 background: url(/img/top.gif) no-repeat left top;

 margin-top: 0;

 padding: 20px 20px 0 20px;

}

.box p {

 padding: 0 20px;

}

This is great for a simple box with a solid color and no borders. But what if you want to create a
fancier style, such as the one in Figure 4-5?

USING BACKGROUNDS FOR EFFECT

77

Figure 4-5. Example of a stylized rounded-corner box

You can actually use the same approach, but this time, instead of setting a background color on
the box, you can set a repeating background image. For this to work, you will need to apply the
bottom curve image to another element. In this case, I used the last paragraph element in the
box:

.box {

 width: 424px;

 background: url(/img/tile2.gif) repeat-y;

}

.box h2 {

 background: url(/img/top2.gif) no-repeat left top;

 padding-top: 20px;

}

.box .last {

 background: url(/img/bottom2.gif) no-repeat left bottom;

 padding-bottom: 20px;

}

.box h2, .box p {

 padding-left: 20px;

 padding-right: 20px;

}

<div class="box">

 <h2>Headline</h2>

 <p class="last">Content</p>

</div>

Figure 4-6 shows the resulting styled box. Because no height has been given to the box, it will
expand vertically as the text size is increased.

CHAPTER 4

78

Figure 4-6. Styled fixed-width box. The height of the box expands as the text size is increased.

Flexible rounded-corner box
The previous examples will all expand vertically if you increase your text size. However, they do
not expand horizontally, as the width of the box has to be the same as the width of the top and
bottom images. If you want to create a flexible box, you will need to take a slightly different
approach. Instead of the top and bottom curves consisting of a single image, they need to be
made up of two overlapping images (see Figure 4-7).

Figure 4-7. Diagram showing how the top graphics expand to form a flexible rounded-corner box

As the box increases in size, more of the larger image will be revealed, thus creating the illusion
that the box is expanding. This concept is sometimes referred as the sliding doors technique
because one image slides over the other, hiding it from view. More images are required for this
method to work, so you will have to add a couple of extra, nonsemantic elements to your markup.

<div class="box">

 <div class="box-outer">

USING BACKGROUNDS FOR EFFECT

79

 <div class="box-inner">

 <h2>Headline</h2>

 <p>Content</p>

 </div>

 </div>

</div>

This method requires four images: the top two images make up the top curve, and the bottom two
images make up the bottom curve and the body of the box (see Figure 4-8). As such, the bottom
images need to be as tall as the maximum height of the box. We will name these images top-
left.gif, top-right.gif, bottom-left.gif, and bottom-right.gif.

Figure 4-8. The images required to create the flexible rounded-corner box

First, you apply the bottom-left.gif to the main box div and bottom-right.gif to the outer div.
Next you apply top-left.gif to the inner div and finally top-right.gif to the heading. Last, it is
a good idea to add some padding to space out the contents of the box a little.

.box {

 width: 20em;

 background: #effce7 url(/img/bottom-left.gif) no-repeat left bottom;

}

.box-outer {

 background: url(/img/bottom-right.gif) no-repeat right bottom;

 padding-bottom: 1em;

}

CHAPTER 4

80

.box-inner {

 background: url(/img/top-left.gif) no-repeat left top;

}

.box h2 {

 background: url(/img/top-right.gif) no-repeat right top;

 padding-top: 1em;

}

.box h2, .box p {

 padding-left: 1em;

 padding-right: 1em;

}

In this example, I have set the width of the box in ems, so increasing the text size in your browser
will cause the box to stretch (see Figure 4-9). You could, of course, set the width in percentages
and have the box expand or contract depending on the size of the browser window. This is one of
the main principles behind elastic and liquid layouts, something I will be covering later in the
book.

Figure 4-9. Flexible rounded-corner boxes expand both horizontally and vertically as the text is
resized.

The addition of a couple of extra nonsemantic elements is not ideal. If you only
have a couple of boxes, it is probably something you can live with. But if you
are concerned you could always add the extra elements using JavaScript (and
the DOM) instead. For more details on this topic, see the excellent article by
Roger Johansson of 456 Berea Street at www.456bereastreet.com/archive/

http://www.456bereastreet.com/archive

USING BACKGROUNDS FOR EFFECT

81

200505/transparent_custom_corners_and_borders.

Mountaintop corners
Mountaintop corners are a simple yet very flexible concept, first coined by Dan Cederholm of
www.simplebits.com, author of the best-selling friends of ED book Web Standards Solutions
(friends of ED, 2004 and updated 2009). Suppose you want to create a variety of different-colored
rounded-corner boxes. Using the previous methods you would have to create different corner
graphics for each color theme. This may be okay if you only had a couple of themes, but say you
wanted to let your users create their own themes? You’d probably have to create the corner
graphics dynamically on the server, which could get very complicated.

Fortunately, there is another way. Instead of creating colored corner graphics, you can create
curved, bitmap corner masks (see Figure 4-10). The masked area maps to the background color
you are using while the actual corner area is transparent. When placed over a colored box, they
give the impression that the box is curved (see Figure 4-11).

Figure 4-10. In a bitmapped corner mask, the white mask will cover the background color,
creating a simple curved effect.

As these corner masks need to be bitmapped, subtle curves work best. If you try to use a large
curve, it will appear jagged and unsightly.

http://www.simplebits.com

CHAPTER 4

82

The basic markup is similar to the previous method; it requires four elements to apply the four
corner masks to:

<div class="box">

 <div class="box-outer">

 <div class="box-inner">

 <h2>Headline</h2>

 <p>Content</p>

 </div>

 </div>

</div>

The CSS is also very similar:

.box {

 width: 20em;

 background: #effce7 url(/img/bottom-left.gif)

 no-repeat left bottom;

}

.box-outer {

 background: url(/img/bottom-right.gif) no-repeat right bottom;

 padding-bottom: 5%;

}

.box-inner {

 background: url(/img/top-left.gif) no-repeat left top;

}

.box h2 {

 background: url(/img/top-right.gif) no-repeat right top;

 padding-top: 5%;

}

USING BACKGROUNDS FOR EFFECT

83

.box h2, .box p {

 padding-left: 5%;

 padding-right: 5%;

}

Figure 4-11. Mountaintop corner box

The main difference, apart from using different images, is the addition of a background color on
the main box div. If you want to change the color of the box, you can simply change the color
value in the CSS without having to re-create any new graphics. This method is only suitable for
creating very simple boxes; however, it provides a great deal of flexibility and can be used over
and over again on different projects.

Multiple background images
The previous examples are great, but most of them rely on the addition of nonsemantic markup to
your code. These extra elements are needed because you can only add one background image
per element. Wouldn’t it be great if you could add multiple background images instead? Well,
through the magic of CSS 3 you can. What’s more, the syntax is extremely simple and takes the
same form as regular background images. The main difference is that instead of defining one
background image to use, you can use as many images as you like. Here’s how it’s done:

.box {

 background-image: url(/img/top-left.gif),

 url(/img/top-right.gif),

 url(/img/bottom-left.gif),

 url(/img/bottom-right.gif);

 background-repeat: no-repeat,

 no-repeat,

 no-repeat,

 no-repeat;

CHAPTER 4

84

background-position: top left,

 top right,

 bottom left,

 bottom right;

}

<div class="box">

 <h2>Headline</h2>

 <p>Content<p>

</div>

You start by defining all the images you want to use with the background-image property. Next,
you set whether you want them to repeat on not. Last, you set their positions using the
background-position property. You can see the results in Figure 4-12. Safari has supported
multiple background images as far back as version 1.3, and the latest versions of Firefox and
Opera have now started to catch up. Internet Explorer doesn’t yet support multiple background
images, but don’t let that stop you from using this technique in situations where it doesn’t matter if
IE users see square corners instead.

Figure 4-12. A rounded corner box made using CSS 3 multiple backgrounds

USING BACKGROUNDS FOR EFFECT

85

border-radius
In these days of high-definition computer games with on-the-fly texture mapping, you would think
that browsers would be able to draw a simple rounded corner box themselves, without the need
of raster graphics. Well, now they can, thanks to the new CSS 3 border-radius property. All you
need to do is set the radius of the desired border and let the browser do the rest (see Figure 4-
13).

.box {

 border-radius: 1em;

}

Figure 4-13. A rounded corner box made using the CSS 3 border-radius property

Because this property is new, there is still some disagreement about how it should actually work.
So until this property gets wider adoption, you’ll need to use browser-specific extensions to
invoke it. Currently, both Firefox and Safari support this property, so I’ll use the –moz and –webkit
prefixes.

.box {

-moz-border-radius: 1em;

-webkit-border-radius: 1em;

border-radius: 1em;

}

CHAPTER 4

86

Browser manufacturers are always experimenting with new extensions to CSS.
Some of these may come from yet to be implemented versions of CSS, while
others may find their way into the specifications at a later date. Some
extensions may never become part of the formal specification, such as those
used by Safari for rendering UI elements on the iPhone.

So as not to confuse other user agents or invalidate your code, these
extensions can be invoked by adding a vendor-specific prefix to your selector,
property, or value. For instance, Mozilla uses the –moz prefix, while Safari uses
the –webkit prefix. There are similar prefixes for IE, Opera, and all the major
browsers. Each browser has its own set of special features you can access
using these prefixes, so you’ll probably need to check which ones are available
on the vendors developer site.

Using this mechanism, you can try out new CSS 3 features before they become
an official recommendation. However, make sure you use these extensions
with care, as the format of these experimental features may differ between
browsers and could change or disappear by the time the specification becomes
an official recommendation.

border-image
Last on my list of new CSS 3 tricks is the border-image property. This excellent addition to CSS
allows you to define a single image to act as the border of an element. What good is a single
image, you may ask? The beautify of this property is that it allows you to slice up that image into
nine separate sectors, based on some simple percentage rules, and the browser will
automatically use the correct sector for the corresponding part of the border. Known as nine-slice
scaling, this technique helps avoid the distortion you’d normally get when resizing rounded corner
boxes. It’s a little difficult to visualize, so I think an example is in order.

Imagine you had a 100-pixel high image of a curved box, like the one in Figure 4-14. If you draw
two lines 25 percent from the top and bottom of the box, then another two lines 25 percent from
the left and the right, you will have divided the box up into nine sectors.

USING BACKGROUNDS FOR EFFECT

87

Figure 4-14. The source file for our border image, with the division points draw on for illustration
purposes.

The border-image property will automatically use the images in each sector for the corresponding
border. So the image in the top-left sector will be used for the top-left border, and the image in the
middle-right sector for the right-hand-side border. I want my borders to be 25 pixels wide, so I set
that as the width in my CSS. If the images aren’t big enough, they will automatically tile, creating
an expandable box (see Figure 4-15). Here is how you achieve this effect in code:

.box {

 -webkit-border-image: url(/img/corners.gif)

 25% 25% 25% 25% / 25px round round;

}

Safari has supported this property for a while, through the use of the Webkit-specific extension,
as shown in this example. Firefox 3.5 and Opera 9.5 now also support border-image, which
opens up its use to a much wider audience.

CHAPTER 4

88

Figure 4-15. A rounded corner box using the border-image property

Drop shadows
Drop shadows are a popular and attractive design feature, adding depth and interest to an
otherwise flat design. Most people use a graphics package like Photoshop to add drop shadows
directly to an image. However, using the power of CSS, it is possible to apply simple drop shadow
effects without altering the underlying image.

There are various reasons you may want to do this. For instance, you may allow nontechnical
people to administer your site who have no experience using Photoshop, or you may simply be
uploading images from a location where you do not have access to Photoshop, such as an
Internet cafe. By having a predefined drop shadow style, you can simply upload a regular image
and have it displayed on your site with a drop shadow.

One of the nicest benefits of using CSS is that it is nondestructive. If you decide that you want to
remove the drop shadow effect later on, you can simply alter a couple of lines in your CSS files
rather than having to reprocess all of your images.

Easy CSS drop shadows
This very simple drop shadow method was first described by Dunstan Orchard of
www.1976design.com. It works by applying a large drop shadow graphic to the background of a
wrapper div. The drop shadow is then revealed by offsetting the image using negative margins.

The first thing you need to do is create the drop shadow graphic. I created my drop shadow
graphic using Adobe Photoshop. Create a new Photoshop file, the dimensions of which are as
large as the maximum size of your image. I created a file that’s 800 pixels by 800 pixels just to be

http://www.1976design.com

USING BACKGROUNDS FOR EFFECT

89

on the safe side. Unlock the background layer and fill it with the color you want your shadow to sit
on. In my case I simply kept the background layer white. Create a new layer and fill it with white.
Now move this layer up and left by 4 or 5 pixels and then apply a 4- or 5-pixel-wide drop shadow
to this layer. Save this image for web and call it shadow.gif (see Figure 4-16).

Figure 4-16. The shadow.gif zoomed in so you can see the 5-pixel drop shadow

The markup for this technique is very simple:

<div class="img-wrapper"><img src="dunstan.jpg" width="300"

height="300" alt="Dunstan Orchard" /></div>

To create the effect, you first need to apply your shadow graphic to the background of the
wrapper div. Because divs are block-level elements, they stretch horizontally, taking up all the
available space. In this situation we want the div to wrap around the image. You can do this by
explicitly setting a width for the wrapper div, but doing so reduces the usefulness of this
technique. Instead, you can float the div, causing it to shrink-wrap on modern browsers, with one
exception—IE 5.x on the Mac. You may want to hide these styles from IE 5.x on the Mac. For
more information on hiding rules from various browsers, see Chapter 8, which discusses hacks
and filters.

.img-wrapper {

background: url(/img/shadow.gif) no-repeat bottom right;

clear: right;

float: left;

}

To reveal the shadow image and create the drop shadow effect (see Figure 4-17), you need to
offset the image using negative margins:

CHAPTER 4

90

.img-wrapper img {

margin: -5px 5px 5px -5px;

}

Figure 4-17. Image with a drop shadow applied

You can create a good, fake photo border effect by giving the image a border and some padding
(see Figure 4-18):

.img-wrapper img {

 background-color: #fff;

 border: 1px solid #a9a9a9;

 padding: 4px;

 margin: -5px 5px 5px -5px;

}

Figure 4-18. The final result of our simple drop shadow technique

USING BACKGROUNDS FOR EFFECT

91

This works for most modern, standards-compliant browsers. However, we need to add in a
couple of simple rules to get it working correctly in IE 6:

.img-wrapper {

 background: url(/img/shadow.gif) no-repeat bottom right;

 clear: right;

 float: left;

 position: relative;

}

.img-wrapper img {

 background-color: #fff;

 border: 1px solid #a9a9a9;

 padding: 4px;

 display: block;

 margin: -5px 5px 5px -5px;

 position: relative;

}

The drop shadow effect now works in IE 6.

Drop shadows à la Clagnut
Richard Rutter of www.clagnut.com came up with a similar method for creating drop shadows.
Instead of using negative margins, his technique uses relative positioning to offset the image:

.img-wrapper {

 background: url(/img/shadow.gif) no-repeat bottom right;

 float:left;

 line-height:0;

}

.img-wrapper img {

 background:#fff;

 padding:4px;

 border:1px solid #a9a9a9;

 position:relative;

 left:-5px;

 top:-5px;

}

http://www.clagnut.com

CHAPTER 4

92

Box-shadow
While the previous techniques server their purpose, they are all a little cumbersome. Wouldn’t it
be good if browsers could create their own drop shadows, doing away with the need of
Photoshop filters and raster graphics? Well you guessed it, CSS 3 allows us to do this as well,
using the handy box-shadow property. This property takes four values: the vertical and horizontal
offsets, the width (and hence blurriness) of the shadow, and the color. So in the following
example, I am offsetting the shadow by three pixels, making it six pixels wide and medium gray
(see Figure 4-19).

img {

 box-shadow: 3px 3px 6px #666;

}

Figure 4-19. A lovely drop shadow using the box-shadow effect

Because this is another one of those experimental CSS 3 properties, you will need to use the
Safari and Firefox extensions for now. However, it hopefully won’t be long until this property is
more widely supported.

img {

 -webkit-box-shadow: 3px 3px 6px #666;

 -moz-box-shadow: 3px 3px 6px #666;

 box-shadow: 3px 3px 6px #666;

}

One of the most exciting things about this property is the fact that it works in conjunction with the
border-radius property (see Figure 4-20). This means you can now programmatically create
drop shadows on rounded corner boxes without even having to open up your graphics package!

USING BACKGROUNDS FOR EFFECT

93

Figure 4-20. A drop shadow on a rounded corner box

We used this effect quite liberally on the UX London 2009 website, serving up drop shadows to
modern browsers (see Figure 4-21), and regular boxes to less-capable browsers (see Figure 4-
22).

CHAPTER 4

94

Figure 4-21. The UX London website as seen by Firefox. Notice the solid box shadows created
using CSS 3.

USING BACKGROUNDS FOR EFFECT

95

Figure 4-22. The UX London website again, this time viewed on Internet Explorer. The design is
bereft of shadows, but most users won’t notice anything is missing.

Opacity
The clever use of opacity can give your designs an extra dimension. It can also be used to layer
elements over each other, so you get a hint of what lies beneath. As well as being a cool trick,
this can also be used to improve the usability on your site.

CSS opacity
CSS opacity has been available in most modern browsers for quite some time, so I’m surprised
that it’s not used more often. Unsurprisingly, it isn’t supported by older version of Internet
Explorer. However, a quick bit of IE-specific code will fix that problem. As an example of its use,
imagine you wanted to pop up an alert message to your users, layering it over the existing
document so they could still see what was underneath (see Figure 4-23).

CHAPTER 4

96

.alert {

 background-color: #000;

 border-radius: 2em;

 opacity: 0.8;

 filter: alpha(opacity=80); /*proprietary IE code*/

}

Figure 4-23. A rounded corner alert box with 80 percent opacity

The one big problem with CSS opacity is that it’s inherited by the contents of the element you’re
applying it to, as well as the background. So if you look closely at Figure 4-23, you’ll see that the
text on the page is showing through the alert text as well. This doesn’t matter if you’re using a
very high opacity in combination with high-contrast text. However, with lower opacities, the
content of your box can start to get unreadable. This is where RGBa comes in.

RGBa
RGBa is a mechanism for setting color and opacity in one go. RGB stands for “Red,” “Green,”
and “Blue,” while the “a” stands for “alpha transparency.” To use RGBa in the previous example,
you would do something like this:

USING BACKGROUNDS FOR EFFECT

97

.alert {

 background-color: rgba(0,0,0,0.8);

 border-radius: 2em;

}

The first three numbers represent the red, green, and blue values of the color. In this case, the
alert box is going to be black, so these are all set to 0. As with opacity, the last number is the
decimal value of opacity, so 0.8 means this background will be 80 percent opaque, or to put it
another way, 20 percent transparent. A value of 1 would make the alert 100 percent opaque,
while a value of 0 would make it fully transparent. The results of this technique are shown in
Figure 4-24.

Figure 4-24. A rounded corner alert box with 80 percent opacity using RGBa

PNG transparency
One of the biggest benefits of the PNG file format is its support for alpha transparency. This
allows you to get really creative with your designs (see Figure 4-25). Unfortunately, Internet
Explorer 6 doesn’t natively support PNG transparency, although IE 7 and 8 do. However, there
are a couple of ways you can get older versions of Internet Explorer to play ball.

CHAPTER 4

98

Figure 4-25. The old Revyver site had a beautiful example of PNG transparency at the bottom of
the viewport. As the page scrolled, you would get glimpses of the content show through the
branches of the tree and arcs of the rainbow.

The best-known way of forcing PNG transparency support in IE 6 is to use the proprietary
AlphaImageLoader filter. To do this, you need to include the following line of code in your CSS.

filter:progid:DXImageTransform.Microsoft.AlphaImageLoader

(src=/img/my-image.png', sizingMethod='crop');

Unfortunately, using this code will invalidate your CSS, so your best option is to filter this off into a
separate IE 6–specific style sheet.

.img-wrapper div {

 filter:progid:DXImageTransform.Microsoft.AlphaImageLoader

 (src='/img/shadow2.png', sizingMethod='crop');

 background: none;

}

The first rule uses a proprietary filter to load in the PNG and enforce alpha transparency. The
original background image will still be displayed, so the second rule simply hides the original
background image.

Internet Explorer has another piece of proprietary code called a conditional comment that will let
you serve up a particular stylesheet to specific versions of IE. In this case, you only want IE 6 to

USING BACKGROUNDS FOR EFFECT

99

see the new stylesheet, so you can place the following code in the head of the page:

<!--[if ie 6]>

<link rel="stylesheet" type="text/css" href="ie6.css"/>

<![endif]-->

Don’t worry too much about conditional comments at this stage; you will learn
all about them in detail in Chapter 8.

The problem with this technique is that it forces you to include this line of code for every alpha-
transparent PNG you want to use. As such, it is somewhat cumbersome to use.

The other alternative is to use a technique known as the IE PNG fix. This involves using a little-
known, Microsoft-specific extension to CSS called behaviors. By downloading the appropriate
.htc file and pointing to it in your IE 6–specific stylesheet, you can enable PNG transparency on
any element you want.

img, div {

 behavior: url(iepngfix.htc);

}

For more information on this technique and to download the .htc file, visit www.twinhelix.com/
css/iepngfix.

CSS parallax effect
Background images aren’t only about creating rounded corner boxes and drop shadows. We can
have a lot of fun with them as well. Clearleft did just that when we launched our Silverback
usability testing application. If you go to www.silverbackapp.com and resize the browser window,
you will notice a strange effect (see Figure 4-26). The background images move at slightly
different speeds, giving the impression that the page has depth. This phenomenon is known as
parallax scrolling and was the mainstay of many old school computer games.

http://www.twinhelix.com
http://www.silverbackapp.com

CHAPTER 4

100

Figure 4-26. Change the window size on www.silverbackapp.com and see what happens.

To achieve this effect, you first need to create a couple of different background images. We
created one image of our vines on a green background and then two further images of vines on
an alpha transparent background. This allowed the midground and foreground images to flow
over each other and the background, without obscuring the view.

The main background will be applied to the body element. However, assuming we’re not using
CSS 3 multiple-background images, we’ll need to add two new elements to attach our
backgrounds to. The content of the page then needs to sit in front of these elements so you can
interact with it. You could place the foreground div in front of the content, but this would partially
block your content and make it difficult to interact with. So the markup structure will look
something like this:

<body>

 <div class="midground">

 <div class="foreground">

 <p>Your content will go here!

 </div>

 </div>

</body>

http://www.silverbackapp.com

USING BACKGROUNDS FOR EFFECT

101

The first thing you need to do is add the main background to the body element. You want this
image to tile horizontally, so you will need to set the image-repeat property to repeat-x. You also
want the body element to take on the color of the background, which in this instance is light
green. Last, you want to offset your image horizontally by 20 percent, relative to the size of the
window. This is where the magic happens. As the window resizes, the position of the background
image will change, and it will appear to move across the screen.

body {

 background-image: url(/img/bg-rear.jpg);

 background-repeat: repeat-x;

 background-color:#d3ff99;

 background-position: 20% 0;

}

You now need to do the same with the midground and foreground images, choosing higher
percentages so they move faster relative to each other and give that sense of depth. We decided
to set the midground’s position to 40 percent, and the foreground position to a whopping 150
percent. You can obviously play around with these positions to generate the effect that is right for
you.

body {

 background-image: url(/img/bg-rear.jpg);

 background-repeat: repeat-x;

 background-color:#d3ff99;

 background-position: 20% 0;

}

.midground {

 background-image: url(/img/bg-mid.png);

 background-repeat: repeat-x;

 background-color: transparent;

 background-position: 40% 0;

}

.foreground {

 background-image: url(/img/bg-front.png);

 background-repeat: repeat-x;

 background-color: transparent;

 background-position: 150% 0;

}

CHAPTER 4

102

Figure 4-27. As the window size changes, the background vines appear to move at different
speeds, giving a sense of depth.

Image replacement
HTML text is great. Search engines can read it; you can copy and paste it; and it enlarges if you
increase the text size in your browser. It is, therefore, a good idea to use HTML text instead of
text as images wherever possible. Unfortunately, web designers have only a limited selection of
fonts to play with. Also, while you can control your typography to a certain extent using CSS,
some things just are not possible with live text. Because of this, there are occasions, usually for
branding reasons, when you will want to use images of text instead.

Rather than embed these images directly in the page, CSS authors came up with the idea of
image replacement. Essentially, you add your text to the document as normal, and then, using
CSS, you hide the text and display a background image in its place. That way, search engines
still have the HTML text to find, and the text will be available if you disable CSS.

USING BACKGROUNDS FOR EFFECT

103

This seemed like a great idea for a while, until various flaws emerged. Some of the more popular
methods are inaccessible to screen readers, and most do not work with images turned off but
CSS turned on. As a result, many CSS authors have stopped using image replacement methods
and have reverted to using plain text. While I advocate avoiding image replacement where
possible, I still believe there can be situations where it is appropriate, such as when you need to
use a particular font because of corporate branding guidelines. To do this, you should have a
good grasp of the various techniques available and understand their limitations.

Fahrner Image Replacement (FIR)
Created by Todd Fahrner, Fahrner Image Replacement (FIR) is the original, and probably the
most popular, image replacement technique. I am going to explain this method because of its
historical significance and because it is one of the easiest methods to understand. However, this
method has some serious accessibility implications, which I will come to in a moment, and should
thus be avoided.

The basic concept is very simple. You wrap the text you want to replace in a span tag:

<h2>

 Hello World

</h2>

You then apply your replacement image as a background image to the heading element:

h2 {

 background:url(hello_world.gif) no-repeat;

 width: 150px;

 height: 35px;

}

and hide the contents of the span by settings its display value to none:

span {

 display: none;

}

This method works like a charm, but it is this last rule that causes problems. Many of the most
popular screen readers ignore elements that have their display value set to none or their
visibility to hidden. Therefore, they will completely ignore this text, causing a huge accessibility
problem. So a technique intended to improve the accessibility of a site actually has the opposite
effect. For this reason, it is best not to use this technique.

Phark
Mike Rundle of www.phark.net invented a screen-reader–friendly image replacement technique

http://www.phark.net

CHAPTER 4

104

that has the added benefit of dropping the extra, nonsemantic div:

<h2>

 Hello World

</h2>

Instead of using the display property to hide the text, the Phark method applies a very large,
negative text indentation to the headline:

h2 {

 text-indent: -5000px;

 background:url(/img/hello_world.gif) no-repeat;

 width: 150px;

 height:35px;

}

This method works well and solves the screen reader issue. However, as with the FIR method,
this method does not work when images are turned off but CSS is turned on. This is an edge
case and probably only applicable to people on very slow connections or those using their cell
phones as a modem. There is an argument that site visitors do have the ability to turn images on
and they just choose not to. However, it is worth bearing in mind that certain people may not see
the replaced text, so it is best to avoid using this method for crucial information or navigation.

Scalable Inman Flash Replacement (sIFR)
One of the main problems image replacement tries to solve is the lack of fonts available on most
computers. Rather than swap the text out with images of text, Mike Davidson and Shaun Inman
took an altogether more inventive approach.

Flash allows you to embed fonts into a SWF file, so instead of swapping the text out for an image,
they decided to swap the text out and replace it with a Flash file. The swapping is done using
JavaScript by looping through the document and grabbing any text within a particular element or
with a particular class name. The JavaScript then swaps the text for a small Flash file. The really
clever part comes next. Rather than creating a separate Flash file for each chunk of text, this
technique places the swapped text back into a single, duplicated Flash file. Thus, all you need to
do to trigger your image replacement is add a class, and the combination of Flash and JavaScript
will do the rest. Another benefit is that the text in Flash files can be made selectable, meaning
that it can be copied and pasted with ease.

Shaun Inman released his Flash image replacement method and dubbed it Inman Flash
Replacement, or IFR for short. IFR is a very lightweight method. Details about this method,
including the source code, can be found at www.shauninman.com/plete/2004/04/ifr-revisited-
and-revised.

Mike Davidson built extensively on this method, creating the Scalable Inman Flash Replacement
(sIFR) method. This method extends IFR by allowing things such as multiline text replacement

http://www.shauninman.com/plete/2004/04/ifr-revisited-and-revised
http://www.shauninman.com/plete/2004/04/ifr-revisited-and-revised
http://www.shauninman.com/plete/2004/04/ifr-revisited-and-revised

USING BACKGROUNDS FOR EFFECT

105

and text resizing. sIFR is now being maintained and developed by Mark Wubben and contains
lots of interesting new features.

To use sIFR on your site, you first need to download the latest version from
http://novemberborn.net/sifr3. Installing sIFR on your site is fairly simple, although it’s worth
reading through the documentation first. The first thing you need to do is open the Flash file,
embed the font you want to use, and export the movie. For sIFR to work properly, you next need
to apply the enclosed print and screen styles or create your own. Next, add the sifr.js
JavaScript file to every page you want sIFR to work on. This file is highly configurable and allows
you to specify which elements to replace, the text color, padding, case, and a variety of other
stylistic elements. However, padding and line-height both affect the size of the text, so in practice,
this isn’t easy. Once you are finished, upload all the files to your server and watch your tired old
fonts be replaced with dynamic Flash content.

The main problem with these techniques involves load times. The pages have to load fully before
JavaScript can replace the text. Consequently, there is usually a brief flicker before all the text
has been replaced with the Flash equivalent (see Figure 4-28).

Figure 4-28. Notice how the headlines at www.fortymedia.com only display once the page has
loaded. This is a sure sign that sIFR is being used on this site.

Although this flicker is not a huge problem, it is noticeable and can give the impression that the
page is loading slowly. Also, some pages can feel a little sluggish if there is a lot of Flash
replacement going on. Furthermore users can get a “flash of unstyled content,” which can look
buggy and disorientating. As such, it’s a good idea to keep any replacement to a minimum and
limit this technique to main headlines only. sIFR is a great way to bring richer typography to the
web and is perfect for relatively small sites with consistent typographic treatment. However, sIFR
can be extremely fiddly when applied to large sites with multiple heading sizes, styles, and colors.
It also gets tricky if some headings span multiple lines or have background colors. So my advice
would be to avoid using sIFR for large projects and limit it to your personal site.

http://novemberborn.net/sifr3
http://www.fortymedia.com

CHAPTER 4

106

Summary
In this chapter, you have learned how background images can be applied to elements to produce
a variety of interesting techniques, such as flexible rounded-corner boxes and pure CSS drop
shadows. You have also seen how the onset of new CSS 3 properties like border-radius and
box-shadow are beginning to make these effects redundant. You have learned all about opacity
and seen how to force PNG support in Internet Explorer along with several methods of image
replacement.

In the next chapter, you will learn how background images and links can be combined to create
some interesting interactive effects.

3

CHAPTER 1

4

109

Chapter 5

Styling Links

The humble anchor link is the foundation of the World Wide Web. It is the mechanism that allows
web pages to interconnect and people to explore and navigate. The default styling for anchor
links is fairly uninspiring, but with a little sprinkling of CSS you can do some amazing things.

In this chapter you will learn about

• Ordering your link selectors based on the cascade

• Creating stylized link underlines

• Styling external links using attribute selectors

• Making links behave like buttons

• Creating visited-link styles

• Creating pure CSS tooltips

Simple link styling
The easiest way to style a link is to use the anchor type selector. For instance, this rule will make
all anchors red:

a {color: red;}

CHAPTER 5

110

However, anchors can act as internal references as well as external links, so using a type
selector is not always ideal. Take this situation, for example. The first anchor contains a fragment
identifier, and when the user clicks that anchor, the page will jump to the second named anchor:

<p>Skip to main content</p>

...

<h1>Welcome</h1>

While you probably only want the link to be styled red, the contents of the headline will be styled
red also. To avoid this, CSS has two special selectors called link pseudo-class selectors. The
:link pseudo-class selector is used to target links that have not been visited, and the :visited
pseudo-class selector is used to target visited links. In this example, all unvisited links will be
blue, and all visited links will be green:

a:link {color: blue;} /* Makes unvisited links blue */

a:visited {color: green;} /* Makes visited links green */

The other two selectors you can use for styling links are the :hover and :active dynamic pseudo-
class selectors. The :hover dynamic pseudo-class selector is used to target elements when they
are hovered over, and the :active dynamic pseudo-class selector targets elements when they
are activated. In the case of links, activation occurs when the link is clicked. In this example, links
will turn red when hovered over or clicked:

a:hover, a:active { color: red;}

To ensure your pages are as accessible as possible, it is always a good idea to add a :focus
pseudo-class to your links when defining hover states. This will allow your links to take on the
same styles when they are tabbed to using the keyboard as they have when hovered over using
the mouse.

a:hover, a:focus { color: red;}

Other elements can also use the :hover, :active, or :focus pseudo-class selectors. For
instance, you could add a :hover pseudo-class on your table rows, an :active pseudo-class on
your submit buttons, or a :focus pseudo-class on your input fields to highlight various forms of
interactivity. Unfortunately, IE 7 and below don’t support the use of pseudo-class selectors on
anything other than links, but all modern browsers do.

/* makes table rows yellow when hovered over */

tr:hover {

 background: yellow;

}

/* makes submit buttons in some browsers yellow when pressed */

input[type="submit"]:active {

 background:yellow;

}

STYLING LINKS

111

/* makes inputs yellow when selected */

input:focus {

 background:yellow;

}

One of the first things most people learn to use these selectors for is turning off the underline for
links, and then turning them back on when they are hovered over or clicked. This can be done by
setting the text-decoration property to none for unvisited and visited links and to underline for
hovered or active links:

a:link, a:visited {text-decoration: none;}

a:hover, a:focus, a:active {text-decoration: underline;}

In the previous example, the order of the selectors is very important. If the order is reversed, the
hover and active styles won’t work.

a:hover, a:focus, a:active {text-decoration: underline;}

a:link, a:visited {text-decoration: none;}

The reason for this is the cascade. In Chapter 1, you learned that when two rules have the same
specificity, the last rule to be defined wins out. In this situation, both rules have the same
specificity so the :link and :visited styles will override the :hover and :active styles. To make
sure this doesn’t happen, it’s a good idea to apply your link styles in the following order:

a:link, a:visited, a:hover, a:focus, a:active

An easy way to remember this order is the phrase “Lord Vader Hates Furry Animals,” where L
stands for link, V stands for visited, H for hover, F for focus, and A for active.

Fun with underlines
From a usability and accessibility standpoint, it is important that your links are distinguishable by
some means other than color. The reason for this is that many people with visual impairments
find it difficult to distinguish between poorly contrasting colors, especially at small text sizes. For
instance, people with color blindness cannot distinguish between certain color combinations with
similar levels of brightness or saturation. Because of this, links are underlined by default.

Simple link embellishments
Designers tend to dislike link underlines, as they add too much weight and visual clutter to a
page. If you decide to remove link underlines, you could choose to make links bold instead. That
way, your page will look less cluttered, but the links will still stand out:

a:link, a:visited {

 text-decoration: none;

 font-weight: bold;

}

CHAPTER 5

112

You can then reapply the underlines when the links are hovered over or activated, reinforcing
their interactive status:

a:hover, a:focus, a:active {

 text-decoration: underline;

 font-weight: bold;

}

However, it is possible to create a low-impact underline using borders instead. In the following
example, the default underline is removed and replaced with a less obtrusive dotted line. When
the link is hovered over or clicked, this line turns solid to provide the user with visual feedback
that something has happened:

a:link, a:visited {

 text-decoration: none;

 border-bottom: 1px dotted #000;

}

a:hover, a:focus, a:active {

 border-bottom-style: solid;

}

Fancy link underlines
You can create some very interesting effects by using images to create your link underlines. For
instance, I have created a very simple underline graphic comprised of diagonal lines (see Figure
5-1).

Figure 5-1. Simple underline graphic

You can then apply this image to your links using the following code:

a:link, a:visited {

 color:#666;

 text-decoration: none;

 background: url(/img/underline1.gif) repeat-x left bottom;

}

You can see the resulting styled link in Figure 5-2.

STYLING LINKS

113

Figure 5-2. Custom link underline

You do not have to stop with link and visited styles. In this example, I have created an animated
GIF for the hover and active states, which I apply using the following CSS:

a:hover, a:focus, a:active {

 background-image: url(/img/underline1-hover.gif);

}

When you hover over or click the link, the diagonal lines appear to scroll from left to right, creating
an interesting pulsing or poling effect. Not all browsers support background image animations, but
those that do not will usually display the first frame of the animation, ensuring that the effect
degrades nicely in older browsers.

Remember to use animation carefully, as it can cause accessibility problems
for some users. If in doubt, always remember to check the Web Content
Accessibility Guidelines (WCAG 1.0) at www.w3.org/TR/WAI-WEBCONTENT.

Visited-link styles
Designers and developers often forget about the visited-link style and end up styling visited links
the same as unvisited ones. However, a separate visited-link style can help orientate users,
showing them which pages or sites they have already visited and avoiding unnecessary
backtracking.

You can create a very simple visited-link style by adding a check box to every visited link:

a:visited {

 padding-right: 20px;

 background: url(/img/check.gif) no-repeat right middle;

}

Styling link targets
As well as linking to a specific document, you can use a link containing a fragment identifier to
point people to a particular part of a page. You do this by adding a hash character, followed by
the ID of the element you want to link to, at the end of your href. This can be extremely useful if
you want point to a specific comment in a long comment thread. For instance, say I wanted to link

http://www.w3.org/TR/WAI-WEBCONTENT

CHAPTER 5

114

to the third comment on this page.

 A great comment by Simon

When you click the preceding link, you will be taken to the appropriate document, and the page
will scroll down to the comment3 element. Unfortunately, if the page is quite busy, it is often
difficult to tell to which element the link has sent you. To get around this problem, CSS 3 allows
you to style the target element using the :target pseudo-class. In this next example, I am going
to highlight the target element by giving it a yellow background (see Figure 5-3).

.comment:target {

 background-color: yellow;

}

Figure 5-3. The third comment is highlighted with a yellow background when linked to, thanks to
the :target selector.

http://example.com/story.htm#comment3

STYLING LINKS

115

If you wanted to be even cleverer, you could choose to give the element an animated background
image that fades from yellow to white, thus simulating the yellow fade technique popularized by
companies like 37 Signals.

.comment:target {

 background-image: url(img/fade.gif);

}

The target selector is supported by all recent versions of Safari and Firefox, but isn’t supported
by Internet Explorer at the time of writing.

Highlighting different types of links
On many sites, it is difficult to tell if a link points to another page on that site or to a different site
altogether. We have all clicked a link expecting it to go to another page in the current site, only to
be whisked away somewhere different and unexpected. To combat this problem, many sites will
open external links in a new window. However, opening a new window is not a good idea as
doing so takes control away from the user and potentially litters the desktops with unwanted
windows. This can also cause problems for users of screen readers if the new window is not
announced. Furthermore, new windows effectively break the back button, as it is impossible go
back to the previous screen.

A better solution would be to indicate external links somehow and let the user decide to leave the
site, open the link in a new window, or more probably these days, open it in a new tab. You can
do this by adding a small icon next to any external links. Sites like www.wikipedia.com already do
this, and an icon convention for offsite links has started to appear: a box with an arrow (see
Figure 5-4).

Figure 5-4. External link icon

The easiest way to include an external link icon on your page is to add a class to any external
links and apply the icon as a background image. In this example, I have created space for the
icon by giving the link a small amount of right padding and then applied the icon as a background
image at the top right of the link (see Figure 5-5).

.external {

 background: url(/img/externalLink.gif) no-repeat right top;

 padding-right: 10px;

}

http://www.wikipedia.com

CHAPTER 5

116

Figure 5-5. External link styling

Although this method works, it is not a particularly smart or elegant way of doing things, as you
have to manually add your class to each external link. What if there was a way to get CSS to
determine whether something was an external link for you? Well, in fact there is: using attribute
selectors.

As you learned in Chapter 1, attribute selectors allow you to target an element based on the
existence or value of an attribute. CSS 3 extends the ability with substring matching. As the name
suggests, these selectors allow you to target an element by matching your chosen text to part of
the attribute’s value. CSS 3 is not an official specification yet, so using these advanced selectors
may invalidate your code. However, the majority of standards-compliant browsers support these
nifty CSS 3 selectors.

This technique works by first targeting any links that start with the text http: using the [att^=val]
attribute selector:

a[href^="http:"] {

 background: url(/img/externalLink.gif) no-repeat right top;

 padding-right: 10px;

}

This should highlight all external links. However, it will also pick up internal links using absolute
rather than relative URLs. To avoid this, you need to reset any links to your own site by removing
the external link icon. This is done by matching links that point to your domain name, removing
the external link icon, and resetting the right padding (see Figure 5-6).

a[href^="http://www.yoursite.com"],

a[href^="http://yoursite.com"] {

 background-image: none;

 padding-right: 0;

}

http://www.yoursite.com
http://yoursite.com

STYLING LINKS

117

Figure 5-6. A page showing external links styled differently from internal ones

Most modern browsers support this technique, but older browsers such as IE 6 and below will
simply ignore it.

If you like, you could extend this technique to highlight email links as well. In this example, I am
adding a small email icon to all mailto links:

a[href^="mailto:"] {

 background: url(img/email.png) no-repeat right top;

 padding-right: 10px;

}

You could even highlight nonstandard protocols such as the AOL instant messaging protocol
(AIM), with a little AIM buddy icon (see Figure 5-7):

a[href^="aim:"] {

 background: url(img/im.png) no-repeat right top;

 padding-right: 10px;

}

instant message

Figure 5-7. Email and instant message link styles

CHAPTER 5

118

Highlighting downloadable documents and feeds
Another common frustration is clicking a link thinking it will take you to a page and discovering
that the site has started downloading a PDF or Microsoft Word document. Luckily, CSS can help
us distinguish these types of links as well. This is done using the [att$=val] attribute selector,
which targets attributes that end in a particular value, such as .pdf or .doc:

a[href$=".pdf"] {

 background: url(img/pdfLink.gif) no-repeat right top;

 padding-right: 10px;

}

a[href$=".doc"] {

 background: url(img/wordLink.gif) no-repeat right top;

 padding-right: 10px;

}

So in a similar way to the previous examples, you can highlight links to word documents or PDFs
with their own separate icon, warning people that they are clicking are downloads rather than
links to another page.

Last, many people have RSS feeds on their websites. The idea is for people to copy these links
into their feed readers. However, inadvertently clicking one of these links may take you to a page
of seemingly meaningless data. To avoid possible confusion, you could highlight RSS feeds using
a similar method, with your own RSS icon:

a[href$=".rss"], a[href$=".rdf"] {

 background: url(img/feedLink.gif) no-repeat right top;

 padding-right: 10px;

}

All these techniques can help to improve the user experience on your site. By warning users
about offsite links or downloadable documents, you let them know exactly what to expect when
they click a link, and avoid unnecessary backtracking and frustration.

Unfortunately, IE 6 and below don’t support the attribute selector. Luckily, you
can create a similar effect by adding a class to each element using JavaScript
and the DOM. One of the best ways to do this is with Simon Willison’s excellent
getElementBySelector function; you can find more details at
http://simonwillison.net/2003/Mar/25/getElementsBySelector/.
Alternatively, jQuery allows you to do something very similar.

http://simonwillison.net/2003/Mar/25/getElementsBySelector

STYLING LINKS

119

Creating links that look like buttons
Anchors are inline elements, which means they only activate when you click the contents of the
link. However, there are instances when you may want to create more of a button-like effect with
a larger clickable area. You can do this by setting the display property of the anchor to block and
then changing the width, height, and other properties to create the style and hit area you desire.

a {

 display: block;

 width: 6.6em;

 line-height: 1.4;

 text-align: center;

 text-decoration: none;

 border: 1px solid #66a300;

 background-color: #8cca12;

 color: #fff;

}

The resulting link should now look like Figure 5-8.

Figure 5-8. Link styled like a button

With the link now displaying as a block-level element, clicking anywhere in the block will activate
the link.

If you look at the CSS, you’ll see that the width has been explicitly set in ems. By their nature,
block-level elements expand to fill the available width, so if the width of their parent elements
were greater than the required width of the link, you would need to apply the desired width to the
link. This would likely be the case if you wanted to use such a styled link in the main content area
of your page. However, if your styled links were going in a sidebar, for example, you would
probably just set the width of the sidebar and not worry about the width of the links.

You may wonder why I am using line-height to control the height of the button instead of
height. Well, this is actually a handy little trick for centering the text in the button vertically. If you
were to set a height, you would probably have to use padding to push the text down and fake
vertical centering. However, text is always vertically centered in a line box, so by using line-
height instead, the text will always sit in the middle of the box. There is one downside, though. If
the text in your button wraps onto two lines, the button will be twice as tall as you want it to be.

CHAPTER 5

120

The only way to avoid this is to size your buttons and text in such a way that the text won’t wrap,
or at least won’t wrap until your text size has been increased beyond a reasonable amount.

If you choose to use this technique, make sure that you only use it on things that are actually links
and don’t update the server. Otherwise, you may experience some undesirable results. When
Google accelerator launched, people found that content in their CMS or web application was
mysteriously disappearing. Sometimes, the entire contents of a site would vanish overnight. It
turns out that the authors of these tools had used anchor links rather than form elements for their
delete buttons. Google accelerator would spider these links in order to cache them and
inadvertently delete the content! Search engines spiders can have the same effect, recursively
deleting vast swathes of data. For that reason, you should never use links to make changes on
the server. Or to put it in technical terms, links should only ever be used for GET requests, and
never for POST requests.

Simple rollovers
In the bad old days, people used large and overly complicated JavaScript functions to create
rollover effects. Thankfully, using the :hover pseudo-class allows us to create rollover effects
without the need of JavaScript. You can extend the previous example to include a very simple
rollover effect simply by setting the background and text color of the link when hovered over (see
Figure 5-9):

a:hover,

a:focus {

 background-color: #f7a300;

 border-color: #ff7400;

}

Figure 5-9. Hover style showing active area

Rollovers with images
Changing background colors works well for simple buttons, but for more complicated buttons, you
will probably want to use background images. For the next example, I have created three button
images: one for the default state, one for the hover and focus states and one for the active state
(see Figure 5-10).

STYLING LINKS

121

Figure 5-10. Images for the normal, hover, and active button states

The code for this example is very similar to the preceding example. The main difference is that
background images are being used instead of borders and background colors.

a:link, a:visited {

 display: block;

 width: 203px;

 height: 72px;

 text-indent: -1000em;

 background: url(/img/button.png) left top no-repeat;

}

a:hover, a:focus { background-image: url(/img/button-over.png);

}

a:active {

 background-image: url(/img/button-active.png);

}

This example uses fixed-width and fixed-height buttons, which is why I have set explicit pixel
dimensions in the CSS. To get the exact text treatment I wanted, I have included the button text
on the graphic and then hidden the anchor text off the screen with a large negative text indent.
However, there is nothing to stop you from creating oversized button graphics or using a
combination of background colors and images to create a fluid or an elastic button.

Pixy-style rollovers
The main drawback with the multiple image method is a slight delay as browsers load the hover
image for the first time. This can cause an undesirable flickering effect and make your buttons
feel a little unresponsive. It is possible to preload the hover images by applying them as a

CHAPTER 5

122

background to the parent element. However, there is another way. Instead of swapping in
multiple background images, use a single image and switch its background position instead.
Using a single image has the added benefit of reducing the number of server requests as well as
allowing you to keep all your button states in one place. This method is known as the Pixy
method after the nickname of its creator, Petr Staníček (you can find more information at his
website: http://wellstyled.com/css-nopreload-rollovers.html).

Begin by creating your combined button image (see Figure 5-11). In this case, I am limiting the
button to an up state, an over state, and an active state. However, you could also include a
visited state if you desired.

Figure 5-11. All three button states as a single image

The code is almost identical to the previous example. However, this time, you align the
background image so the normal state is in the center and then shift the background to the right
or left for the hover and active states.

a:link, a:visited {

 display: block;

 width: 203px;

 height: 72px;

 text-indent: -1000em;

 background: url(/img/buttons.png) -203px 0 no-repeat;

}

a:hover, a:focus {

 background-position: right top;

}

a:active {

 background-position: left top;

}

Unfortunately, Internet Explorer still makes a round-trip to the server to request a new image,
even though all you are doing is changing the alignment of the image. This causes a slight flicker,
which can be a little annoying. To avoid the flicker you need to apply the rollover state to the link’s
parent element, for example, its containing paragraph.

http://wellstyled.com/css-nopreload-rollovers.html

STYLING LINKS

123

p {

 background: url(/img/ buttons.png)«

 no-repeat right top;

}

The image will still disappear for an instant while it is being reloaded. However, during this time,
the same image will be revealed underneath, hiding the flicker.

An alternate way to remove the flicker is to include the following line of code in your Internet
Explorer specific CSS file, which turns background caching on.

html {

 filter: expression(document.execCommand("BackgroundImageCache",«

false, true));

}

CSS sprites
Multiple requests to the server can have a dramatic effect on the performance of your site, so the
Pixy method aims to reduce the number of requests by including all your button states in a single
image. But why stop there? Why not go one step further and include all your icons or even your
site navigation in a single image? That way, you could reduce the number of calls to the server
from multiple figures to just two or three. This is exactly what CSS sprites are—a single image
containing a multitude of different icons, buttons, or other graphics. Many large websites use this
technique including the Yahoo! homepage. In fact, we use the same technique for the Clearleft
site navigation (see Figure 5-12).

#nav li a {

 display: block;

 text-indent: -9999px;

 height: 119px;

 width: 100px;

 background-image: url('/img/nav.png');

 background-repeat: no-repeat;

}

#nav li.home a,

#nav li.home a:link,

#nav li.home a:visited {

 background-position: 0 0;

}

CHAPTER 5

124

#nav li.home a:hover,

#nav li.home a:focus,

#nav li.home a:active {

 background-position: 0 -119px;

}

#nav li.who-we-are a,

#nav li.who-we-are a:link,

#nav li.who-we-are a:visited {

 background-position: -100px 0;

}

#nav li.who-we-are a:hover,

#nav li.who-we-are a:focus,

#nav li.who-we-are a:active {

 background-position: -100px -119px;

}

Figure 5-12. The CSS sprites file we use on the Clearleft site

By using this technique, you can cut down on the requests the web browser makes to your
server, considerably speeding up the download times. Furthermore, using sprites keeps all your

STYLING LINKS

125

buttons, icons, and miscellaneous graphics in one location, improving maintainability. So it’s a
win-win situation.

Rollovers with CSS 3
CSS 3 includes a number of properties like text-shadow, box-shadow, and border-radius that
make it possible to create heavily styled buttons that require no images whatsoever. To create
such a button, I will start with the code from our first example:

a {

 display: block;

 width: 6.6em;

 height: 1.4em;

 line-height: 1.4;

 text-align: center;

 text-decoration: none;

 border: 1px solid #66a300;

 background-color: #8cca12;

 color: #fff;

}

Next, I’ll add curved borders and a drop shadow. I’m also going to give the button text a subtle
drop shadow (see Figure 5-13).

a {

 display: block;

 width: 6.6em;

 height: 1.4em;

 line-height: 1.4;

 text-align: center;

 text-decoration: none;

 border: 1px solid #66a300;

 -moz-border-radius: 6px;

 -webkit-border-radius: 6px;

 border-radius: 6px;

 background-color: #8cca12;

 color: #fff;

 text-shadow: 2px 2px 2px #66a300;

 -moz-box-shadow: 2px 2px 2px #ccc;

CHAPTER 5

126

 -webkit-box-shadow: 2px 2px 2px #ccc;

 box-shadow: 2px 2px 2px #ccc;

}

Figure 5-13. A rounded corner button using only CSS

To re-create the gradient, Safari 4 beta supports a proprietary value called -webkit-gradient.
While I would never normally recommend the use of proprietary code, this may provide a hint of
where CSS is heading in the future. This proprietary value takes a number of different arguments
including the type of gradient (liner or radial), the direction of the gradient (in this case, top-left to
bottom-left), a starting color, an end color, and any stops along the way. Obviously, if you didn’t
want to use this proprietary code, you could simply produce your own background image gradient
instead.

a {

 display: block;

 width: 6.6em;

 height: 1.4em;

 line-height: 1.4;

 text-align: center;

 text-decoration: none;

 border: 1px solid #66a300;

 -moz-border-radius: 6px;

 -webkit-border-radius: 6px;

 border-radius: 6px;

 background-image: -webkit-gradient(linear, left top, left bottom, «

from(#abe142), to(#67a400));

 background-color: #8cca12;

 color: #fff;

 text-shadow: 2px 2px 2px #66a300;

 -moz-box-shadow: 2px 2px 2px #ccc;

 -webkit-box-shadow: 2px 2px 2px #ccc;

STYLING LINKS

127

 box-shadow: 2px 2px 2px #ccc;

}

Last, Safari includes another proprietary property called box-reflect, which as the name
suggests, allows you to create reflections of an object. This property contains a number of
different arguments including the position and distance of the reflection along with a masking
image. Interestingly, you can use the –webkit-gradient value to automatically generate this
mask. In this instance, I’m positioning the reflection 2 pixels below the button and using a mask
that fades to white (see Figure 5-14).

a {

display: block;

width: 6.6em;

 height: 1.4em;

 line-height: 1.4;

 text-align: center;

 text-decoration: none;

 border: 1px solid #66a300;

 -moz-border-radius: 6px;

 -webkit-border-radius: 6px;

 border-radius: 6px;

 background-image: -webkit-gradient(linear, left top, left bottom, «

from(#abe142), to(#67a400));

 background-color: #8cca12;

 color: #fff;

 text-shadow: 2px 2px 2px #66a300;

 -moz-box-shadow: 2px 2px 2px #ccc;

 -webkit-box-shadow: 2px 2px 2px #ccc;

 box-shadow: 2px 2px 2px #ccc;

 -webkit-box-reflect: below 2px -webkit-gradient«

(linear, left top, left bottom, from(transparent),«

color-stop(0.52, transparent), to(white));

}

CHAPTER 5

128

Figure 5-14. A rounded corner button using Safari specific extensions to CSS

There is some debate around whether these types of effects should be done using CSS or not, so
it’s uncertain if they will ever make it into the official specification. Because of this and the lack of
cross-browser support, it would be unwise to use these techniques in a production environment.
However, that shouldn’t stop you from playing around with them on your personal sites just as
long as you realize that they’re invalid CSS and may get removed or changed in future versions
of the browser.

Pure CSS tooltips
Tooltips are the little yellow text boxes that pop up in some browsers when you hover over
elements with title tags. Several developers have created their own custom, stylized tooltips using
a combination of JavaScript and CSS. However, it is possible to create pure CSS tooltips by
using CSS positioning techniques. This technique requires a modern, standards-compliant
browser like Firefox to work properly. As such, it is not a technique you would add to your day-to-
day arsenal. However, it does demonstrate the power of advanced CSS and gives you a hint of
what will be possible when CSS is better supported.

As with all of the examples in this book, you need to start with well-structured and meaningful
HTML:

<p>

Andy Budd (This website rocks) is a web developer based in«

Brighton England.

</p>

I have given the link a class of tooltip to differentiate it from other links. Inside the link, I have
added the text I wish to display as the link text, followed by the tooltip text enclosed in a span. I
have wrapped my tooltip text in brackets so that the sentence still makes sense with styles turned
off.

The first thing you need to do is set the position property of the anchor to relative. This allows
you to position the contents of the span absolutely, relative to the position of its parent anchor.

http://www.andybudd.com

STYLING LINKS

129

You do not want the tooltip text to display initially, so you should set its display property to none:

a.tooltip {

 position: relative;

}

a.tooltip span {

 display: none;

}

When the anchor is hovered over, you want the contents of the span to appear. This is done by
setting the display property of the span to block, but only when the link is hovered over. If you
were to test the code now, hovering over the link would simply make the span text appear next to
the link.

To position the contents of the span below and to the right of the anchor, you need to set the
position property of the span to absolute and position it 1 em from the top of the anchor and 2
ems from the left.

a.tooltip:hover span {

 display: block;

 position: absolute;

 top: 1em;

 left: 2em;

}

Remember, an absolutely positioned element is positioned in relation to its
nearest positioned ancestor or, failing that, the root element. In this example,
we have positioned the anchor, so the span is positioned in relation to that.

And that’s the bulk of the technique. All that is left is to add some styling to make the span look
more like a tooltip. You can do this by giving the span some padding, a border, and a background
color:

a.tooltip:hover span, a.tooltip:focus span {

 display:block;

 position:absolute;

 top:1em;

 left:2em;

 padding: 0.2em 0.6em;

CHAPTER 5

130

 border:1px solid #996633;

 background-color:#FFFF66;

 color:#000;

}

In Firefox, the applied technique should look something like Figure 5-15.

Figure 5-15. Pure CSS tooltip

Summary
In this chapter, you have learned how to style links in a variety of ways. You now know how to
style links depending on the site or file they link to, and you can make links behave like buttons
and create rollover effects using colors or images. You can even create advanced effects such as
pure CSS tooltips.

In the next chapter, you will learn how to manipulate lists, and using the information you have
learned in this chapter, create navigation lists, pure CSS image maps, and remote rollovers. Let
the fun begin!

3

CHAPTER 1

4

133

Chapter 6

Styling Lists and Creating Nav Bars

It is human nature to try to organize the world around us. Scientists create lists of animals, plants,
and chemical elements. Magazines create lists of the top 10 movies, the latest fashion trends,
and the worst-dressed celebrities. People write shopping lists, to-do lists, and lists to Santa. We
just love making lists.

Lists provide us with a way of grouping related elements and, by doing so, we give them meaning
and structure. Most web pages contain some form of list, be it a list of the latest news stories, a
list of links to your favorite web pages, or a list of links to other parts of your site. Identifying these
items as lists and marking them up as such can help add structure to your HTML documents,
providing useful hooks with which to apply your styles.

In this chapter you will learn about

• Styling lists with CSS

• Using background images as bullets

• Creating vertical and horizontal nav bars

• Using sliding doors tabbed navigation

• Pure CSS drop-downs

• Creating CSS image maps

• Creating remote rollovers

• Using definition lists

CHAPTER 6

134

Basic list styling
Basic list styling is very simple. Say you start with this simple to-do list:

 Read emails

 Write chapter

 Go shopping

 Cook dinner

 Watch Lost

To add a custom bullet, you could use the list-style-image property. However, this doesn’t give
you much control over the position of your bullet image. Instead, it is more common to turn list
bullets off and add your custom bullet as a background image on the list element. You can then
use the background image positioning properties to accurately control the alignment of your
custom bullet.

Older versions of Internet Explorer and Opera control list indentation using the left margin,
whereas most modern browsers, including Firefox and Safari use left padding. As such, the first
thing you will want to do is remove this indentation by zeroing down the margin and padding on
the list. To remove the default bullet, you simply set the list style type to none:

ul {

 margin: 0;

 padding: 0;

 list-style-type: none;

}

Adding a custom bullet is very straightforward. Applying padding to the left side of the list item
creates the necessary space for your bullet. The bullet is then applied as a background image on
the list item. If the list item is going to span multiple lines, you will probably want to position the
bullet at or near the top of the list item. However, if you know the contents of the list items won’t
span more than one line, you can vertically center the bullet by setting the vertical position to
either middle or 50%:

li {

 background: url(/img/bullet.gif) no-repeat 0 50%;

 padding-left: 30px;

}

The resulting styled list can be seen in Figure 6-1.

STYLING LISTS AND CREATING NAV BARS

135

Figure 6-1. Simple styled list with custom bullets

Creating a basic vertical nav bar
Combining the previous example with the link styling techniques you learned in Chapter 5, you
can create graphically rich vertical navigation bars complete with CSS rollovers, like the one
shown in Figure 6-2.

Figure 6-2. Styled vertical nav bar

CHAPTER 6

136

As always, you need to start with good, semantic mark-up:

<ul class="nav">

 Home

 About

 Our Services

 Our Work

 News

 Contact

The first things you want to do are remove the default bullets and zero down the margin and
padding:

ul.nav {

 margin: 0;

 padding: 0;

 list-style-type: none;

}

You can then start layering on the graphical styling. In this case, I’m giving my navigation menu a
light green background and a dark green border. I’m also going to set the width of my navigate list
in ems.

ul.nav {

 margin: 0;

 padding: 0;

 list-style-type: none;

 width: 8em;

 background-color: #8BD400;

 border: 1px solid #486B02;

}

Rather than style the list items, styling the enclosed anchor links provides better cross-browser
compatibility. To create a button-like hit area, you simply set the display property of the anchors
to block. The anchor links will then expand to take up the available space, which in this case is
determined by the width of the list. You could set the width of the anchors explicitly, but I’ve found
setting the width of the parent list makes for more maintainable code. The last couple of rules are
just stylistic, setting the color of the link text and turning off the underlines.

STYLING LISTS AND CREATING NAV BARS

137

ul.nav a {

 display: block;

 color: #2B3F00;

 text-decoration: none;

}

To create the beveled effect on the menu items, you need to set the top border to be lighter than
the background color and the bottom border slightly darker. At this point, you can also drop in a
background image to use as an icon.

ul.nav a {

 display: block;

 color: #2B3F00;

 text-decoration: none;

 border-top: 1px solid #E4FFD3;

 border-bottom: 1px solid #486B02;

 background: url(/img/arrow.gif) no-repeat 5% 50%;

 padding: 0.3em 1em;

}

Ideally, I would have set the positioning of my arrow to be 10 pixels from the
left-hand edge of the anchor. However, the CSS specification doesn’t allow the
mixing of units, so I’ve used a percentage instead. In reality, most browsers
accept mixed units, and I think this is one of several instances where the
specification is wrong.

With all the borders stacked one on top of the other, you’ll notice that the bottom border on the
final link doubles up with the bottom border on the list. In this instance, I’m going to take the
simple option and remove the bottom border from the list. However in situations where this isn’t
possible, the addition of a class on the first or last list item can allow you to remove the border
directly. In the future, you’ll also be able to use the :last-child pseudo class, but for the time
being, browser support is limited.

ul.nav .last a {

 border-bottom: 0;

}

The list now looks like a stylish vertical navigation bar. To complete the effect, the last thing you
need to do is apply the :hover, :focus, and :selected states. To do this, simply change the
background and text colors. You could also experiment with changing the border colors to create
a depressed button type effect. These styles are applied to the anchor links when the user hovers
over them. They are also applied to any anchors that have a class of selected applied to their
parent list item.

CHAPTER 6

138

ul.nav a:hover,

ul.nav a:focus,

 ul.nav .selected a {

 color: #E4FFD3;

 background-color: #6DA203;

}

This technique should now work in all the major browsers except IE 6 and below for Windows.
Unfortunately, IE6 inexplicably adds extra space above and below the list items. To fix this bug,
you need to set the display property on the list items to inline:

ul.nav li {

 display: inline: /* :KLUDGE: Removes large gaps in IE/Win */

}

And there you have it: a styled vertical nav bar, complete with rollovers.

Highlighting the current page in a nav bar
In the previous vertical nav bar example, I used a class to indicate the current page. For small
sites with the navigation embedded in the page, you can simply add the class on a page-by-page
basis. For large sites, there is a good chance that the navigation is being built dynamically, in
which case the class can be added on the back end. However, for medium-sized sites, where the
main navigation doesn’t change, it is common to include the navigation as an external file. In
these situations, wouldn't it be good if there were a way to highlight the page you are on, without
having to dynamically add a class to the menu? Well, with CSS there is.

This concept works by adding an ID or a class name to the body element of each page, denoting
which page or section the user is in. You then add a corresponding ID or class name to each item
in your navigation list. The unique combination of body ID and list ID/class can be used to
highlight your current section or page in the site nav.

Take the following HTML fragment as an example. The current page is the home page, as
indicated by an ID of home on the body. Each list item in the main navigation is given a class
name based on the name of the page the list item relates to.

<body id="home">

<ul class="nav">

 Home

 About

 Our Services

 Our Work

 News

STYLING LISTS AND CREATING NAV BARS

139

 Contact

</body>

To highlight the current page, you simply target the following combination of IDs and class
names:

#home .nav .home a,

#about .nav .about a ,

#news .nav .news a,

#products .nav .products a,

#services .nav .services a {

 background-position: right bottom;

 color: #fff;

 cursor: default;

}

When the user is on the home page, the nav item with a class of home will display the selected
state, whereas on the news page, the nav item with the class of news will show the selected state.
For added effect, I have changed to cursor style to show the default arrow cursor. That way, if
you mouse over the selected link, your cursor will not change state and you won’t be tempted to
click a link to a page you are already on.

Creating a simple horizontal nav bar
Imagine you had a page of search results and you wanted to create a simple page-based
navigation list like the one in Figure 6-3. To do this, you would start by creating an ordered list of
your navigation options.

<ol class="pagination">

 Prev

 1

 <li class="selected">2

 3

 4

 5

 Next

CHAPTER 6

140

Figure 6-3. Horizontal search results navigation bar

You’ll notice that I’ve used the rel attribute to denote the previous and next pages in a set of
results. This is a great use of the rel attribute and will come in handy when we style these links
differently later on.

As with the other list examples in this chapter, you first need to remove the default browser
margin, padding, and list styles. Many developers, including myself, prefer to do this using a
global reset at the start of their style sheets. So if you’re using a global reset, you can skip this
first step.

ol.pagination {

 margin: 0;

 padding: 0;

 list-style-type: none;

}

To make the list items line up horizontally instead of vertically you could set their display property
to inline. However for more complex horizontal list styling you will gain more control if you float
the items and then use margins to space the space them out instead.

ol.pagination li {

 float: left;

 margin-right: 0.6em;

}

Now the list items are all displaying horizontally you can start applying the graphical treatment. In
this case, I want all the page numbers to appear in a square box with a gray background. When
users hover over these links, I want their backgrounds to turn blue and the link text to turn white.

ol.pagination a,

 ol.pagination li.selected {

 display: block;

 padding: 0.2em 0.5em;

 border: 1px solid #ccc;

 text-decoration: none;

}

STYLING LISTS AND CREATING NAV BARS

141

ol.pagination a:hover,

ol.pagination a:focus,

ol.pagination li.selected {

 background-color: blue;

 color: white;

}

That’s all very well for the page numbers, but I want to style the prev and next links slightly
differently. To do this, I’m going to target their rel attributes using attribute selectors. First off, I
don’t want the previous and next links to have a border effect, so I’m going to turn these off.

ol.pagination a[rel="prev"],

ol.pagination a[rel="next"] {

 border: none;

}

The other thing I want to do is add a presentational arrow at the start and the end of the list. You
could do this by hard-coding them into your HTML. However, you can also inject them using CSS,
allowing you to change or remove them later on. To use CSS, you need to use the :before and
:after pseudo-selectors in combination with the content property.

ol.pagination a[rel="prev"]:before {

 content: "\00AB";

 padding-right: 0.5em;

}

ol.pagination a[rel="next"]:after {

 content: "\00BB";

 padding-left: 0.5em;

}

The first declaration targets the anchor link at the start of the list and adds a double left arrow with
the character code of "00AB" before said link. The second declaration targets the last anchor link
and adds a double right arrow at the end of the link.

And there you have it, a simple, yet flexible, horizontal page navigation bar.

Creating a graphical nav bar
Simple navigation bars are great for paged content, but you’ll probably want to create more
graphically rich menus for your main navigation. In this example, I am going to demonstrate how
to create a graphical navigation bar like the one shown in Figure 6-4.

CHAPTER 6

142

Figure 6-4. Horizontal nav bar

As in the previous example, you start with a simple, unordered list:

<ul class="nav">

 Home

 About

 News

 Products

 Services

 Clients

 Case Studies

You then zero down the padding and margins, as well as remove the default bullets. For this
example, I want my horizontal nav bar to be 72 ems wide and to have a repeating orange
gradient as a background.

ul. nav {

 margin: 0;

 padding: 0;

 list-style: none;

 width: 72em;

 background: #FAA819 url(img/mainNavBg.gif) repeat-x;

}

The list is currently displayed vertically. To make it display horizontally, float your list items to the
left.

ul. nav li {

 float: left;

}

Remember that when an element is floated, it no longer takes up any space in the flow of the
document. As such, the parent list effectively has no content and collapses down, hiding the list
background. As you learned in Chapter 3, there are several ways to make parent elements
contain floated children. One method is to add a clearing element. Unfortunately, this adds
unnecessary markup to the page so should be avoided if possible. Another other method is to
float the parent element as well and clear it further down the line, say, using the site footer. The
third method it to use the overflow:hidden technique, which is the method I normally use:

STYLING LISTS AND CREATING NAV BARS

143

ul.nav {

 margin: 0;

 padding: 0;

 list-style: none;

 width: 72em;

 overflow: hidden;

 background: #FAA819 url(img/mainNavBg.gif) repeat-x;

}

As with the page navigation example, each of the links in this horizontal nav bar is made to
behave like a button by setting its display property to block. If you wanted each button to be a
fixed size, you could explicitly set its height and width. However, this can cause maintainability
issues. Instead I’m going to let the width of each button be based on the size of the anchor text.
To do this, rather than setting an explicit width, I have applied 3 ems of padding to the left and
right sides of each anchor link. As in the previous example, the link text is being vertically
centered using line height. After that, the link underlines are turned off, and the link color is
changed to white:

ul.nav a {

 display: block;

 padding: 0 3em;

 line-height: 2.1em;

 text-decoration: none;

 color: #fff;

}

I want to create dividers between each link in the nav bar. You could do this by setting horizontal
borders on the list item or anchors. However, for simplicity’s sake, I’m going to apply a
background image to the anchor links instead.

ul.nav a {

 display: block;

 padding: 0 2em;

 line-height: 2.1em;

 background: url(img/divider.gif) repeat-y left top;

 text-decoration: none;

 color: #fff;

}

However, the first link in the nav bar will have an unwanted divider. Adding a class to the first list

CHAPTER 6

144

item and setting the background image to none can remove this:

ul. nav .first a {

 background-image: none;

}

Alternatively, if you’re not too worried about supporting IE 6, you could forego the additional class
and use the :first-child pseudo class instead.

ul.nav li:first-child a {

 background: none;

}

Last, the rollover state in this example is simply a change in link color:

ul.nav a:hover,

ul.nav a:focus {

 color: #333;

}

And there you have it: a well-styled horizontal nav bar with good, cross-browser support.

Simplified sliding door tabbed navigation
In Chapter 4, you learned about Douglas Bowman’s sliding doors technique and how it could be
used to create flexible, rounded-corner boxes. This technique can also be used to create flexible,
expandable tabbed navigation. Using this method, tabs are created from one large image and
one side image. As the text in the tabs expands, more of the large image is uncovered. The
smaller image stays flush to the left, covering up the hard edge of the larger image and
completing the effect (see Figure 6-5).

Figure 6-5. Example of the “sliding doors” technique

STYLING LISTS AND CREATING NAV BARS

145

The images used to create the tabs in the following example can be seen in Figure 6-6. Both of
these images are very large. This is to allow the font size to be increased by several hundred
percent without the tabs appearing to break.

Figure 6-6. The two images that make up the tabs

The HTML for this example is exactly the same as in the previous, horizontal nav bar example:

<ul class="nav">

 Home

 About

 News

 Products

 Services

 Clients

 Case Studies

As in the previous examples, the margin and padding are zeroed, the list bullets are removed,
and a width is set for the navigation bar. An overflow of hidden is also applied to the navigation
list in order to clear any enclosed floats.

ul.nav {

 margin: 0;

 padding: 0;

 list-style: none;

 width: 72em;

 overflow: hidden;

}

Like the previous example, the list elements are floated left to make them display horizontally
rather than vertically. However, this time, the larger of the two images that make up the tab is

CHAPTER 6

146

applied as a background image to the list item. As this image forms the right side of the tab, it is
positioned to the right

ul.nav li {

 float: left;

 background: url(img/tab-right.gif) no-repeat right top;

}

As in the previous example, the anchors are set to display as block-level elements to make the
whole area clickable. The width of each tab is again controlled by the width of the contents, and
setting the line height similarly controls the height. To complete the tab effect, the left part of the
tab is applied as a background on the anchor and aligned left. As the tab changes size, this
image will always be aligned left, sitting over the top of the larger image and covering the hard left
edge. Last, to make sure this technique works in IE 5.2 on the Mac, the anchors are floated as
well.

ul.nav li a {

 display: block;

 padding: 0 2em;

 line-height: 2.5em;

 background: url(img/tab-left.gif) no-repeat left top;

 text-decoration: none;

 color: #fff;

 float: left;

}

To create the rollover effect, you can simply change the link color:

ul.nav a:hover,

ul.nav a:focus {

 color: #333;

}

The resulting tabbed navigation should look like Figure 6-7.

Figure 6-7. Sliding doors tabbed navigation at normal size

If you increase the text size in your browser, you should see that the tabs scale nicely, as
illustrated in Figure 6-8.

STYLING LISTS AND CREATING NAV BARS

147

Figure 6-8. Sliding doors tabbed navigation after the text size has been scaled several times

This method provides an easy and hassle-free way to make attractive and accessible tabbed
navigation bars.

Suckerfish drop-downs
Despite some concerns about usability, drop-down menus continue to be a popular interface
element on the Web. JavaScript-only solutions abound, but many of them have innate
accessibility problems—namely not working in browsers where JavaScript has been disabled.
Because of this, several pioneers have explored the idea of pure CSS drop-downs. One such
person is Patrick Griffiths with his Suckerfish drop-downs technique
(http://www.alistapart.com/articles/dropdowns/).

This technique is incredibly simple and works by nesting the subnavigation in an unordered list,
positioning that list off screen and then repositioning it when the parent list item is hovered. You
can see the final product in Figure 6-9.

Figure 6-9. Pure CSS Suckerfish drop-downs in action

Let’s start this example by marking up our multilevel navigation list.

<ul class="nav">

 Home

 Products

 Silverback

 Font Deck

http://www.alistapart.com/articles/dropdowns

CHAPTER 6

148

 Services

 Design

 Development

 Consultancy

 Contact Us

As with all the navigation examples in this chapter, you first need to zero down the margin and
padding as well as remove the default bullets. As this is going to be a horizontal navigation, you
then need to give your list items a width and float them all left. For stylistic reasons, I want to give
my navigation lists a border and background color. However, because the enclosed list items are
all floated, they take up no space, forcing the lists to collapse in on themselves. To get around
this problem, I’ve decided to float the lists as well.

ul.nav, ul.nav ul {

 margin: 0;

 padding: 0;

 list-style-type: none;

 float: left;

 border: 1px solid #486B02;

 background-color: #8BD400;

}

ul.nav li {

 float: left;

 width: 8em;

 background-color: #8BD400;

}

To ensure the items in the drop-down menus stack up vertically, you need to set the width of the
list to be the same as the width of the enclosed list items. The drop-down menu is now starting to
take shape.

STYLING LISTS AND CREATING NAV BARS

149

To hide the actual drop-downs until they are activated, we need to set their position to absolute
and then hide them off the left-hand side of the screen.

ul.nav li ul {

 width: 8em;

 position: absolute;

 left: -999em;

}

Now, this is where the magic happens. By adding a hover pseudo-selector to the parent list item,
we can make the drop-down list reappear by changing its position back to its regular starting
position.

.nav li:hover ul {

 left: auto;

}

These last few styles set the navigation links to behave like block-level elements and then change
the appearance of the list, giving the items background colors and beveled borders.

ul.nav a {

 display: block;

 color: #2B3F00;

 text-decoration: none;

 padding: 0.3em 1em;

 border-right: 1px solid #486B02;

 border-left: 1px solid #E4FFD3;

}

ul.nav li li a {

 border-top: 1px solid #E4FFD3;

 border-bottom: 1px solid #486B02;

 border-left: 0;

 border-right: 0;

}

/*remove unwanted borders on the end list items*/

ul.nav li:last-child a {

 border-right: 0;

 border-bottom: 0;

}

CHAPTER 6

150

ul a:hover,

ul a:focus {

 color: #E4FFD3;

 background-color: #6DA203;

}

And there you have it, a simple drop-down navigation bar that uses pure CSS. This technique
works in most modern browsers but fails in older version of Internet Explorer, which don’t support
the :hover pseudo-class of nonanchor elements. To get around this issue, you can use a few
lines of JavaScript or a .htc behavior file to enable this functionality.

The JavaScript code for the drop-down navigation fix in Internet Explorer is
beyond the scope of this book, but you can find out more details at
http://htmldog.com/articles/suckerfish/dropdowns/.

CSS image maps
Image maps allow web developers to specify regions of an image to act as hotspots. Image maps
were very popular several years ago, but they are much less common these days. This is due
partly to the popularity of Flash and partly to the move toward simpler and less presentational
markup. While image maps are still a perfectly valid part of HTML, they do mix presentation with
content. However, it is possible to create simple image maps with a combination of lists, anchors,
and some advanced CSS.

For this example, I’m going to use a photograph of some members of the Clearleft team
pretending to be an indie band in front of the graffiti outside our offices (see Figure 6-10). When I
hover over each person, I want a rectangular box to appear. Clicking this box will take me to that
person’s website.

http://htmldog.com/articles/suckerfish/dropdowns

STYLING LISTS AND CREATING NAV BARS

151

Figure 6-10. Rich, Sophie, Cath, James, and Paul posing in front of the graffiti outside our office

The first thing you need to do is add your image to the page, inside a named div:

<div class="imagemap">

 <img src="img/nerdcore.jpg" width="333" height="500"

 alt="Some of the Clearleft team" />

</div>

Then, you need to add a list of links to each person’s website after the image. Each list item
needs to be given a class to identify the person in that list item. You can also give each link a title
attribute containing the name of the person. That way, when the link is hovered over, a tooltip

CHAPTER 6

152

showing the person’s name is will be displayed on most browsers.

<div id="imagemap">

 <img src="img/nerdcore.jpg" width="333" height="500"

 alt="Some of the Clearleft team" />

 <li class="rich">

 Richard Rutter

 <li class="sophie">

 Sophie Barrett

 <li class="cath">

 Cathy Jones

 <li class="james">

 James Box

 <li class="paul">

 Paul Annett

</div>

Set the width and height of the div so that it matches the dimensions of the image. Then set the
position property of the div to relative. This last step is the key to this technique, as it allows
the enclosed links to be positioned absolutely, in relation to the edges of the div, and hence the
image.

.imagemap {

 width: 333px;

 height: 500px;

http://www.clagnut.com
http://www.wellieswithwings.org
http://www.electricelephant.com
http://www.jeckecko.net/blog
http://twitter.com/nicepaul

STYLING LISTS AND CREATING NAV BARS

153

 position: relative; /* The key to this technique */

}

You won’t want the list bullets to display, so remove them by setting the list-style property to
none. For completeness, you may as well zero down the list’s margin and padding as well:

.imagemap ul {

 margin: 0;

 padding: 0;

 list-style: none;

}

The next thing to do is style the links. By positioning the anchor links absolutely, they will all be
moved to the top-left corner of the containing div. They can then be positioned individually over
the correct people, forming the hotspots. However, first you will need to set their widths and
heights to create your desired hit area. The link text is still displayed; therefore, it is necessary to
hide it off the screen by using a large, negative text indent:

.imagemap a {

 position: absolute;

 display: block;

 width: 50px;

 height: 60px;

 text-indent: -1000em;

}

The individual links can now be positioned over the relevant people:

.imagemap .rich a {

 top: 50px;

 left: 80px;

}

.imagemap .sophie a {

 top: 90px;

 left: 200px;

}

.imagemap .cath a {

 top: 140px;

 left: 55px;

}

CHAPTER 6

154

.imagemap .james a {

 top: 140px;

 left: 145px;

}

.imagemap .paul a {

 top: 165px;

 left: 245px;

}

Last, to create the rollover effect, a solid white border is applied to the links when they are
hovered over:

.imagemap a:hover,

imagemap a:focus {

 border: 1px solid #fff;

}

And that is the basic technique finished. If you try rolling over one of the pictures, you should see
something similar to Figure 6-11.

STYLING LISTS AND CREATING NAV BARS

155

Figure 6-11. The CSS image map being rolled over

Well, that’s assuming you’re using a more capable browser like Safari or Firefox. If you’re using
Internet Explorer, you won’t see anything at all! It appears that Internet Explorer doesn’t like
displaying links whose content has been hidden off-screen, even if you’ve explicitly set widths
and heights. The good news is that since writing the first edition of this book, I’ve discovered a fix.

If you give the anchor links some kind of background, this seems to trick Internet Explorer into
behaving correctly. The only problem is, we don’t actually want the links to have a background, as
they are supposed to be hidden! You could try setting the background to be transparent, but this
doesn’t seem to work. So instead, why not use a transparent image like a transparent PNG or
GIF?

CHAPTER 6

156

.imagemap a {

 position: absolute;

 display: block;

 background-image: url(/img/shim.gif);

 width: 60px;

 height: 80px;

 text-indent: -1000em;

}

Bizarrely enough, you don’t actually have to point to a real image! You can simply make up a
nonexistent URL and still trick IE into behaving correctly. However, linking to a nonexistent URL
feels wrong, even if it is being used to fix a buggy browser, so I’d stick to using a real image,
however redundant

Flickr-style image maps
If you have used the photo sharing service Flickr, you may have come across a similar technique
used to annotate images (see Figure 6-12). When you roll over an annotated image, a double-
bordered box will appear over the area containing each note. When you hover over one of these
boxes, it will highlight and display the note. With a bit of tweaking, we can achieve the same thing
using the previous technique.

STYLING LISTS AND CREATING NAV BARS

157

Figure 6-12. Image notes on flickr

To create the double-border box, you need to add a couple of extra spans inside each anchor
link. The note will also need the addition of an extra span. Once the extra spans have been added,
the amended list should look like this:

 <li class="rich">

http://www.clagnut.com

CHAPTER 6

158

 Richard Rutter

...

The CSS starts off identical to the previous example, setting the dimensions of the wrapper div to
those of the image, and the position property to relative. The list padding and margin are again
zeroed down and the bullets removed:

.imagemap {

 width: 333px;

 height: 500px;

 position: relative;

}

.imagemap ul {

 margin: 0;

 padding: 0;

 list-style: none;

}

As before, the enclosed anchor links are positioned absolutely. However this time I’m going to set
the dimensions on the inner spans, and let the outer spans and anchor links take shape around
them. I’ve given the outer span a dark border and the inner span a light border to highlight their
positions on the image. Last, I don’t want to hide the text inside the anchor links; I want to display
it as a tool tip instead. As such, I’ve given this text some basic styling.

.imagemap a {

 position: absolute;

 display: block;

 background-image: url(/img/shim.gif);

 color: #000;

 text-decoration: none;

 border: 1px solid transparent;

}

STYLING LISTS AND CREATING NAV BARS

159

.imagemap a .outer {

 display: block;

 border: 1px solid #000;

}

.imagemap a .inner {

 display: block;

 width: 50px;

 height: 60px;

 border: 1px solid #fff;

}

As before, you will need to position the anchors over each person:

.imagemap .rich a {

 top: 50px;

 left: 80px;

}

.imagemap .sophie a {

 top: 90px;

 left: 200px;

}

.imagemap .cath a {

 top: 140px;

 left: 55px;

}

.imagemap .james a {

 top: 140px;

 left: 145px;

}

CHAPTER 6

160

.imagemap .paul a {

 top: 165px;

 left: 245px;

}

You can then apply the rollover effect to the anchor link. This is done by changing the anchor’s
border color from transparent to yellow, on hover and focus:

.imagemap a:hover,

.imagemap a:focus {

 border-color: #d4d82d;

}

To display the note when the hotspot is rolled over, you first need to position the contents of the
note span beneath the hotspot. To do this, set the position of the note span to absolute and give it
a negative bottom position. To pretty up the notes, set a width, some padding, and a background
color, and then center the text:

.imagemap a .note {

 position: absolute;

 bottom: -3em;

 width: 7em;

 padding: 0.2em 0.5em;

 background-color:#ffc;

 text-align: center;

 }

If you check the page in the browser, it should look something like Figure 6-13.

STYLING LISTS AND CREATING NAV BARS

161

Figure 6-13. The Flickr style rollovers are starting to take shape

As you can see, the effect is starting to take shape. The notes look OK, but it would be nice if
they were centered horizontally below the hotspot, rather than flush to the left. You can do this by
positioning the left edge of the note span at the midpoint of the hotspot. Next, move the note span
left, half the width of the note, using negative margins. The hotspot in this example is 50 pixels
wide, so I have set the left position of the note to be 25 pixels. The notes are 8 ems wide,
including the padding, so setting a negative left margin of 4 ems will horizontally center the note
beneath the hotspot.

CHAPTER 6

162

.imagemap a .note {

 position: absolute;

 bottom: -3em;

 width: 7em;

 padding: 0.2em 0.5em;

 background-color:#ffc;

 text-align: center;

 left: 25px;

 margin-left: -4em;

}

With the notes now centered, it’s time to work on their interactivity. The notes should be hidden
by default and only displayed when the hotspot is hovered over. To do this, you could set the
display property to none and then change it to block when the anchor link is hovered over.
However, this would prevent some screen readers from accessing the contents of the note.
Instead, I am going to hide the text off the left side of the screen and reposition it on hover:

.imagemap a .note {

 position: absolute;

 bottom: -3em;

 width: 7em;

 padding: 0.2em 0.5em;

 background-color:#ffc;

 text-align: center;

 left: -1000em;

 margin-left: -5em;

}

.imagemap a:hover .note,

.imagemap a:focus .note {

 left: 25px;

}

We are almost there now. Just one more tweak is required to finish the technique. Rather than
continuously display the hotspots’ double borders, it would be nice if the borders only displayed
when the image was rolled over. That way, people can enjoy the image normally, unfettered by
the hotspots. However, when the mouse hovers over the image, the hotspots appear, letting the
visitor know more information is available to be discovered. You can do this by making the

STYLING LISTS AND CREATING NAV BARS

163

borders on the outer and inner spans transparent by default and then setting their color when the
image is hovered over:

.imagemap a .outer {

 display: block;

 border: 1px solid transparent;

}

.imagemap a .inner {

 display: block;

 width: 50px;

 height: 60px;

 border: 1px solid transparent;

}

.imagemap:hover a .outer,

.imagemap:focus a .outer {

 border-color: #000;

}

.imagemap:hover a .inner,

.imagemap:focus a .inner {

 border-color: #fff;

}

Unfortunately, as you have already learned, IE 6 only supports hovering on anchor links. To get
around this problem, it is also a good idea to display the borders when the hotspots are hovered
over directly:

.imagemap:hover a .outer,

.imagemap:focus a .outer,

.imagemap a:hover .outer,

.imagemap a:focus .outer {

 border: 1px solid #000;

}

CHAPTER 6

164

.imagemap:hover a .inner,

.imagemap:focus a .inner,

.imagemap a:hover .inner,

.imagemap a:focus .inner {

 border: 1px solid #fff;

}

And there you have it: a Flickr-style, advanced CSS image map (see Figure 6-14).

Figure 6-14. The finished version of our Flickr-style image map

STYLING LISTS AND CREATING NAV BARS

165

Remote rollovers
A remote rollover is a hover event that triggers a display change somewhere else on the page.
This is accomplished by nesting one or more elements inside an anchor link. Then, using
absolute positioning, you can position the nested elements individually. Despite being displayed
in different places, they are both contained within the same parent anchor, so will both react to
the same hover event. As such, when you hover over one element, it can affect the style of
another element.

In this example, you are going to build on the basic CSS image map technique by placing a list of
links below the image. When the links are hovered over, the image hotspots will be outlined.
Conversely, when you hover over the hot areas on the picture, the text links will highlight.

The HTML for this example is similar to that of the basic CSS image map example. However, you
will need two additional spans: one wrapped around the link text and one empty span to act as the
hotspot. This will allow you to position the link text beneath the image and the hotspots over the
respective people.

<div class="remote">

 <img src="img/nerdcore.jpg" width="333" height="500"

alt="Rich, Sophie, Cath, James and Paul" />

 <li class="rich">

 » Richard Rutter

 <li class="sophie">

 » Sophie Barrett

http://www.clagnut.com
http://www.wellieswithwings.org

CHAPTER 6

166

 <li class="cath">

 » Cathy Jones

 <li class="james">

 » James Box

 <li class="paul">

 » Paul Annett

</div>

The basic list styling is the same as the image map example:

.remote {

 width: 333px;

 height: 500px;

 position: relative;

}

http://www.electricelephant.com
http://www.jeckecko.net/blog
http://twitter.com/nicepaul

STYLING LISTS AND CREATING NAV BARS

167

.remote ul {

 margin: 0;

 padding: 0;

 list-style: none;

}

The first things you need to do are set the position property of the hotspots to absolute and then
specify their dimensions. In this example, three of the hotspots are the same size, while two are
slightly larger. As such, I’ve defined the default sizes first and then overridden them where
necessary. Just as in the previous technique, this will position all of the anchors at the top-left
corner of the image. You can then position each hotspot over the relevant person in the image,
using the top and left positioning properties.

.remote a .hotspot {

 width: 50px;

 height: 60px;

 position: absolute;

}

.remote .rich a .hotspot {

 top: 50px;

 left: 80px;

}

.remote .sophie a .hotspot {

 top: 90px;

 left: 200px;

}

.remote .cath a .hotspot {

 top: 140px;

 left: 55px;

 width: 60px;

 height: 80px;

}

CHAPTER 6

168

.remote .james a .hotspot {

 top: 140px;

 left: 145px;

}

.remote .paul a .hotspot {

 top: 165px;

 left: 245px;

 width: 60px;

 height: 80px;

}

Similarly, the spans containing the link text are also positioned absolutely and are given a width of
15 ems. They, too, are positioned in relation to the enclosing list, in this case to the right of the
image using a negative right position. Last, the links are given a cursor style to make sure the
correct icon is displayed in IE.

.remote a .link {

 position: absolute;

 display: block;

 width: 10em;

 right: -11em;

 cursor: pointer;

}

.remote .rich a .link {

 top: 0;

}

.remote .sophie a .link {

 top: 1.2em;

}

.remote .cath a .link {

 top: 2.4em;

}

STYLING LISTS AND CREATING NAV BARS

169

.remote .james a .link {

 top: 3.6em;

}

.remote .paul a .link {

 top: 4.8em;

}

The hotspots should now be in the correct place, as should the text links.

To create the rollover effect on the hotspot when either the hotspot or the text is hovered over,
you need to apply a border to the hotspot span, when the parent anchor is hovered over:

.remote a:hover .hotspot,

.remote a:focus .hotspot {

 border: 1px solid #fff;

}

Similarly, to change the color of the text when either the text or the hotspot span is hovered over,
you need to change the style on the span when the parent anchor is hovered or otherwise gains
focus:

.remote a:hover .link ,

.remote a:focus .link {

 color: #0066FF;

}

If you test this example, it works perfectly in Safari and Firefox (see Figure 6-15). If you hover
over a person’s name, the link text changes color, and a box appears over that person in the
picture. The same happens if you hover over the person in the image.

CHAPTER 6

170

Figure 6-15. Remote rollover demonstration. When the link text at the bottom of the image is
rolled over, an outline appears over the associated person in the image.

While the styling of this example is quite simple, you are really only limited by your imagination. In
fact, we use a slightly modified version of this technique on the Who we are section of the
Clearleft site (http://clearleft.com/is/) (see Figure 6-16).

http://clearleft.com/is

STYLING LISTS AND CREATING NAV BARS

171

Figure 6-16. When you roll over pictures of the Clearleft team, the name of that person is
highlighted in the list on the right.

A short note about definition lists
Throughout this chapter, I have discussed how unordered lists (and by extension, ordered lists)
can be used to create a variety of effects. However, there is a third, often overlooked list type that
has been gaining more attention of late: the definition list. A definition list consists of two core

CHAPTER 6

172

components: a definition term <dt> and one or more definition descriptions <dd>.

<dl>

 <dt>Apple</dt>

 <dd>Red, yellow or green fruit</dd>

 <dd>Computer company</dd>

 <dt>Bananna</dt>

 <dd>Curved yellow fruit</dd>

</dl>

As the name suggests, the primary purpose of a definition list is to mark up definitions. However,
the HTML specification is rather vague and suggests definition lists could be used for other
applications like product properties or conversations. This stretches the concept of definitions
somewhat but still makes a certain amount of sense in the context of HTML’s history as a simple
text formatting language.

Many web standards pioneers seized on the fact that definition lists could be used to structurally
group a series of related elements and started to use them to create everything from product
listing and image galleries, to form and even page layouts. While these techniques are
undoubtedly clever, I personally believe they stretch the implied meaning of definition lists beyond
their natural breaking point.

One of the arguments for using definition lists in this fashion is that no other HTML element
allows for this type of association. However, this isn’t strictly true, as the purpose of the div
element is to group a document up into logical sections. More worryingly, this is exactly the same
type of argument used when justifying tables for layout. This raises concerns that definition lists
are starting to be used inappropriately.

For more information on definition lists, I recommend checking out the excellent article by Mark
Norman Francis at 24 Ways (http://24ways.org/2007/my-other-christmas-present-is-a-
definition-list).

Summary
In this chapter, you have learned how flexible lists can be. You learned how to create vertical and
horizontal navigation bars, including accessible tabbed navigation. Finally, you learned how to
use positioning to create pure CSS image maps and remote rollovers.

In the next chapter, you will learn how to create accessible form layouts and data tables, and how
to style them with CSS.

http://24ways.org/2007/my-other-christmas-present-is-a-definition-list
http://24ways.org/2007/my-other-christmas-present-is-a-definition-list
http://24ways.org/2007/my-other-christmas-present-is-a-definition-list

3

CHAPTER 1

4

175

Chapter 7

Styling Forms and Data Tables

As more and more interactivity is called for on the Web, forms are becoming an increasingly
important part of modern web applications. Forms allow users to interact with systems, enabling
them to do everything from registering feedback to booking complicated travel itineraries. As
such, forms can be as simple as an e-mail address and a message field, or they can be hugely
complex, spanning multiple pages. Form layout has traditionally been done using tables;
however, in this chapter, you will learn that even complicated forms can be laid out using CSS.

Tables are slowly regaining their rightful position purely as a way of displaying tabular data, rather
than a means of laying out pages. As well as needing to capture user data, web applications
increasingly need to display this data in a usable and an easy-to-understand format. Form and
data table design have been relatively neglected in favor of higher-profile areas of design.
However, good information and interaction design can make or break a modern web application.

In this chapter, you will learn about

• Creating attractive and accessible data tables

• Creating simple and complicated form layouts

• Styling various form elements

• Providing accessible form feedback

CHAPTER 7

176

Styling data tables
Many developers realize the pitfalls of table-based design and avoid using layout tables wherever
possible. A small group of individuals have gone a step further and attempted to ditch tables
altogether, re-creating things like calendar layouts in pure CSS. Well-meaning as this strategy is,
calendars, by their nature, are table-based content. After all, they’re basically just rows of weeks
and columns of days. As such, there is still a place for the use of tables on the Web.

Even relatively simple data tables can be hard to read if they contain more than a few rows and
columns. Without separation between data cells, information blurs together, resulting in a jumbled
and confusing layout (see Figure 7-1).

Figure 7-1. Compact data tables can be very confusing at first glance

Conversely, tables with a lot of whitespace can also be very difficult to read, as columns and cells
start to lose their visual association with each other. This is particularly problematic when you’re
trying to follow rows of information on tables with very large column spacing, such as the one in
Figure 7-2. If you are not careful, it is easy to accidentally stray into the wrong row when moving
between columns. This is most noticeable in the middle of the table where the hard edge of the
top and bottom of the table provide less of a visual anchor.

STYLING FORMS AND DATA TABLES

177

Figure 7-2. Widely spaced tables can also be difficult to immediately comprehend

By contrast, a few minutes spent designing your data tables can greatly improve their
comprehension and the speed at which information can be retrieved. For instance, the dates in
Figure 7-3 have been given breathing room with a small amount of vertical and horizontal
padding. They have also been highlighted with a subtle beveled effect, making them look
clickable. The main column headings have been distinguished from the data through subtly
different background colors, the use of a bottom border, and typographic treatment. The result is
an easy-to-use calendar widget.

Figure 7-3. Stylized data table

CHAPTER 7

178

Table-specific elements
If data tables can be difficult for sighted users, imagine how complicated and frustrating they must
be for people using assistive technologies such as screen readers. Fortunately, the HTML
specification includes a number of elements and attributes intended to increase the accessibility
of data tables for these devices. Not all of these elements are currently supported by screen
readers, but it is definitely good practice to use them where possible.

Summary and caption
The first of these elements is a table caption, which basically acts as a heading for the table.
Although this is not a required element, it is always a good idea to use a caption wherever
possible. In this example, I’m using the caption to show users which month they are looking at.
Another useful addition is a table summary. The summary attribute can be applied to the table tag
and is used to describe the content of the table. Much like an image’s alt text, the summary
should effectively summarize the data in the table, and a well-written summary may alleviate the
need to read the contents of the table.

<table class="cal" summary="A calendar style date picker">

 <caption>

 < January 2008

 >

 </caption>

</table>

thead, tbody, and tfoot
Using thead, tfoot, and tbody allows you to break tables up into logical sections. For instance,
you can place all of your column headings inside the thead element, providing you with a means
of separately styling that particular area. If you choose to use a thead or tfoot element, you must
use at least one tbody element. You can only use one thead and tfoot element in a table, but
you can use multiple tbody elements to help break complicated tables into more manageable
chunks.

Row and column headings should be marked up as th rather than td, although if something is
both a heading and data it should be left as a td. Table headings can be given a scope attribute of
row or col to define whether they are row or column headings. They can also be given a value of
rowgroup or colgroup if they relate to more than one row or column.

<thead>

 <tr>

 <th scope="col">Sun</th>

STYLING FORMS AND DATA TABLES

179

 <th scope="col">Mon</th>

 <th scope="col">Tue</th>

 <th scope="col">Wed</th>

 <th scope="col">Tur</th>

 <th scope="col">Fri</th>

 <th scope="col">Sat</th>

 </tr>

</thead>

col and colgroups
While the tr element allows developers to apply styles to whole rows, it is much more difficult to
apply a style to an entire column. To get around this problem, the W3C introduced the colgroup
and col elements. A Colgroup is used to define and group one or more columns using the col
element. Unfortunately, not many browsers support the styling of col and colgroup elements.

<colgroup>

 <col id="sun" />

 <col id="mon" />

 <col id="tue" />

 <col id="wed" />

 <col id="thur" />

 <col id="fri" />

 <col id="sat" />

</colgroup>

Data table markup
Putting all of these HTML elements and attributes together, you can create the basic outline for
the calendar table shown in Figure 7-3.

CHAPTER 7

180

<table class="cal" summary="A calendar style date picker">

 <caption>

 < January 2008 <a href="#"
rel="next">>

</caption>

 <colgroup>

 <col id="sun" />

 <col id="mon" />

 <col id="tue" />

 <col id="wed" />

 <col id="thur" />

 <col id="fri" />

 <col id="sat" />

 </colgroup>

<thead>

 <tr>

 <th scope="col">Sun</th>

 <th scope="col">Mon</th>

 <th scope="col">Tue</th>

 <th scope="col">Wed</th>

 <th scope="col">Tur</th>

 <th scope="col">Fri</th>

 <th scope="col">Sat</th>

 </tr>

</thead>

<tbody>

 <tr>

 <td class="null">30</td>

 < td class="null">31</td>

 <td>1</td>

 <td>2</td>

 <td>3</td>

 <td>4</td>

STYLING FORMS AND DATA TABLES

181

 <td>5</td>

 </tr>

 <tr>

 <td>6</td>

 <td>7</td>

 <td class="selected">8</td>

 <td>9</td>

 <td>10</td>

 <td>11</td>

 <td>12</td>

 </tr>

...

</tbody>

</table>

Styling the table
The CSS specification has two table border models: separate and collapsed. In the separate
model, borders are placed around individual cells, whereas in the collapsed model, cells share
borders. Most browsers default to the separate model, but the collapsed model is usually of more
use. As such, one of the first things you would normally do is set the border-collapse property of
your table to collapse. However, for the purposes of this demonstration, I want to keep the
double borders in order to create a beveled effect. As such, I start by setting the border-collapse
property to separate. Then, for stylistic reasons, I’m going to center all the text in the table and
remove the default padding and margin.

table.cal {

 border-collapse: seperate;

 border-spacing: 0;

 text-align: center;

 color: #333;

}

.cal th, .cal td {

 margin: 0;

 padding: 0;

}

CHAPTER 7

182

CSS has a border-spacing property that allows you to control the spacing between cells.
Unfortunately, IE 7 and below do not understand this property, so you need to fall back on the old
but reliable cellspacing attribute. This attribute is, strictly speaking, presentational in nature.
However, it is still valid HTML and is the only means of controlling cell spacing in IE 6 and 7.

<table cellspacing="0" class="cal" summary="A calendar style date picker">

Adding the visual style
The groundwork has been set, so it is now time to start adding the visual style. To make the table
caption look a little more like a regular heading, you can increase the font size and make it bold.
You can also give the caption some breathing room by applying vertical padding.

.cal caption {

 font-size:1.25em;

 padding-top: 0.692em;

 padding-bottom: 0.692em;

 background-color: #d4dde6;

}

To position the previous and next links on either side of the current month, give them some
horizontal margin and then float them left and right respectively. You can then give them a more
prominent hit area by applying some padding. To style these links, I’ve decided to use the
attribute selector to target their rel attributes. However, if you wanted to support older browsers,
you could add a class to each link instead. Once you’ve positioned these links, you can style
them any way you like. In this example, I’m simply going to change the links’ background color
when a user hovers over them.

.cal caption [rel="prev"] {

 float: left;

 margin-left: 0.2em;

}

.cal caption [rel="next"] {

 float: right;

 margin-right: 0.2em;

}

STYLING FORMS AND DATA TABLES

183

.cal caption a:link,

.cal caption a:visited {

 text-decoration: none;

 color: #333;

 padding: 0 0.2em;

}

.cal caption a:hover,

.cal caption a:active,

.cal caption a:focus {

 background-color: #6d8ab7;

}

To distinguish the initial row of table headings, I’m going to give them a slightly lighter background
than the rest of the table, along with a subtle underline. I’m also going to make the text slightly
smaller than the rest of the form.

.cal thead th {

 background-color: #d4dde6;

 border-bottom: 1px solid #a9bacb;

 font-size:0.875em;

}

By default, I want the text in the body of the table to be grayed out, indicating that it can’t be
selected. You’ll notice that I’ve also given the text a subtle text shadow.

.cal tbody {

 color: #a4a4a4;

 text-shadow: 1px 1px 1px white;

 background-color: #d0d9e2;

}

CHAPTER 7

184

To give the table cells a beveled effect, you need to set slightly different colors on each side;
lighter colors on the top and left, darker ones on the bottom and right. You then need to style the
anchor links. In this case, I’m setting them all to block and applying padding to create a button
like hit area. I’m also going to embolden the fonts and give them a slightly darker background.

.cal tbody td {

 border-top: 1px solid #e0e0e1;

 border-right: 1px solid #9f9fa1;

 border-bottom: 1px solid #acacad;

 border-left: 1px solid #dfdfe0;

}

.cal tbody a {

 display: block;

 text-decoration: none;

 color: #333;

 background-color: #c0c8d2;

 font-weight: bold;

 padding: 0.385em 0.692em 0.308em 0.692em;

}

Last, I’m going to set a hover state for the anchor links. Previously selected dates will also inherit
this style through the inclusion of a selected class. In this case, I’m going to make the links turn
white on a blue background and give them a subtle text shadow.

.cal tbody a:hover,

.cal tbody a:focus,

.cal tbody a:active,

.cal tbody .selected a:link,

.cal tbody .selected a:visited,

.cal tbody .selected a:hover,

.cal tbody .selected a:focus,

.cal tbody .selected a:active {

 background-color: #6d8ab7;

 color: white;

 text-shadow: 1px 1px 2px #22456b;

}

STYLING FORMS AND DATA TABLES

185

You’ll notice that the dates still retain their beveled appearance when hovered over. If you want
give the appearance that the dates have been depressed, change the color of the cell borders so
the top and left borders are darker, while the bottom and right borders are lighter. Be aware that,
because this style is using a hover pseudo selector on a nonanchor element, it won’t display in IE
6. If you need this technique to work in IE 6, you’ll want to add borders to the links instead.

.cal tbody td:hover,

.cal tbody td.selected {

 border-top: 1px solid #2a3647;

 border-right: 1px solid #465977;

 border-bottom: 1px solid #576e92;

 border-left: 1px solid #466080;

}

And there you have it, a beautifully styled calendar picker similar to the one in Figure 7-3.

Simple form layout
Short and relatively simple forms are easiest to fill in when the form labels appear vertically above
their associated form elements. Users can simply move down the form step by step, reading each
label and completing the following form element. This method works best on short forms
collecting relatively simple and predictable information such as contact details (see Figure 7-4).

CHAPTER 7

186

Figure 7-4. Simple form layout

Useful form elements
HTML provides a number of useful elements that can help add structure and meaning to a form.
The first one of these is the fieldset element. A Fieldset is used for grouping related blocks of
information. In Figure 7-4, two fieldsets are being used: one for the contact details and one for
the comments. Most user agents apply a thin border around fieldsets, which can be turned off
by setting the border property to none.

To identify the purpose of each fieldset, you can use a legend element. Legends act a little like
a fieldset’s heading, usually appearing vertically centered with the top of the fieldset and
indented a little to the right. Unfortunately, legends are notoriously difficult to style because of the
inconsistent way browsers place them. Some browsers, like Firefox and Safari, use padding to
create a small indent. However, other browsers, such as Opera and IE, have large default indents

STYLING FORMS AND DATA TABLES

187

that are not controllable using padding, margins, or even positioning. As such, if you choose to
use legends, you will have to accept a certain amount of variation between browsers.

Form labels
The label element is an extremely important one, as it can help add structure and increase the
usability and accessibility of your forms. As the name suggests, this element is used to add a
meaningful and descriptive label to each form element. In many browsers, clicking the label
element will cause the associated form element to gain focus. The real benefit of using labels is
to increase form usability for people using assistive devices. If a form uses labels, screen readers
will correctly associate a form element with its label. Without labels, the screen reader will have to
“guess” which text relates to which form element, sometimes getting it wrong. Screen reader
users can also bring up a list of all the labels in a form, allowing users to audibly scan through the
form in much the same way as you would visually scan through them.

Associating a label with a form control is very easy and can be done in one of two ways: either
implicitly by nesting the form element inside the label element:

<label>email <input name="email" type="text"/><label>

or explicitly by setting the for attribute of the label equal to the id name of the associated form
element:

<label for="email">email<label>

<input name="email" id="email" type="text"/>

You will notice that this input, and all the form controls in this chapter, contain both a name and an
id attribute. The id attribute is required to create the association between the form input and the
label, while the name is required so that the form data can be sent back to the server. The id and
name don’t have to be the same, although I prefer to keep them identical when possible, for the
sake of consistency.

Labels associated with form controls using the for attribute don’t need to be near those controls
in the source code; they could be in a completely different part of the document. However, from a
structural point of view, separating form controls from their labels isn’t wise and should be
avoided wherever possible.

The basic layout
Using these three structural elements, you can start laying out your form by marking up the
contents of the first fieldset. The unstyled form is shown in Figure 7-5.

CHAPTER 7

188

<fieldset>

 <legend>Your Contact Details</legend>

 <div>

 <label for="author">Name:</label>

 <input name="author" id="author" type="text" />

 </div>

 <div>

 <label for="email">Email Address:</label>

 <input name="email" id="email" type="text" />

 </div>

 <div>

 <label for="url">Web Address:</label>

 <input name="url" id="url" type="text" />

 </div>

</fieldset>

Figure 7-5. Unstyled form

First, you will need to set the general styles for the fieldset and legend elements. The fieldsets
must be vertically separated using margins, and the contents can be given breathing space using
padding. To highlight the fieldsets, you can give them a light background with a slightly darker,
1-pixel border. Try not to make the background too dark, though, as this can add too much visual
weight to the form, making it more difficult to comprehend. Making the legends bold can also help
break up the information and make it easier to digest.

fieldset {

 margin: 1em 0;

 padding: 1em;

STYLING FORMS AND DATA TABLES

189

 border : 1px solid #ccc;

 background: #f8f8f8;

}

legend {

 font-weight: bold;

}

Positioning the labels so they appear vertically above the form elements is actually very simple. A
label is an inline element by default. However, setting its display property to block will cause it
to generate its own block box, forcing the input elements onto the line below. The width of text
input boxes varies from browser to browser, so for consistency, you should explicitly set the width
of your text input boxes. In this example, I am using ems to create a more scalable form layout.

label {

 display: block;

 cursor: pointer;

}

input {

 width: 20em;

}

Changing the cursor style of the label to pointer is a good idea here, as it shows that the labels
can be interacted with.

Other elements
This layout works equally well for other form elements such as text areas:

<fieldset>

 <legend>Comments</legend>

 <div>

 <label for="text">Message: </label>

 <textarea name="text" id="text">

 </textarea>

CHAPTER 7

190

 </div>

</fieldset>

The dimensions of text areas also vary across browsers, so it is a good idea to explicitly set their
width and height as well. In this instance, I’m setting a width of 100 percent so it is effectively
defined by its parent element. Setting widths in this way is a good idea, as it makes your layouts
more flexible and independent.

textarea {

 width: 100%;

 height: 10em;

}

Unlike text areas and text inputs, radio buttons and check boxes need to be handled differently.
Rather than having their labels above them, these elements usually have their labels to the right
of them. When stacked vertically, all the elements are left aligned, creating a nice solid vertical
and making them easier to select (see Figure 7-6).

Figure 7-6. Radio button layout

Earlier in this example, the width of the text boxes was defined by applying a width to the input
element. However, the input element covers other form widgets such as check boxes, radio
buttons, and submit buttons, as well as the more common text input box. As such, by setting the
input element to be 20 ems wide, all of the input elements will be 20 ems.

One way around this problem is to use the attribute selector to target particular types of form
element. So instead of setting all the inputs to 20 ems, you could specifically target text inputs:

input[type="text"] {

 width: 20em;

}

STYLING FORMS AND DATA TABLES

191

Unfortunately, the attribute selector is only supported on more modern browsers and does not
work in IE 6 and below. Until the attribute selector is more widely supported, the best way to
distinguish between input elements is to give them a class.

For instance, you could give radio buttons a class name of radio:

<fieldset>

 <legend>Remember Me</legend>

 <div>

 <label for="remember-yes"><input id="remember-yes" class="radio"

name="remember" type="radio" value="yes" />Yes</label>

 </div>

 <div>

 <label for="remember-no"><input id="remember-no" class="radio"

name="remember" type="radio" value="no" checked="checked" />No</label>

 </div>

</fieldset>

You could then override the previously set input width by setting the width of radio buttons to
auto. The same can be done for check boxes and submit buttons:

input.radio, input.checkbox, input.submit {

 width: auto;

}

Notice how I’ve wrapped the labels around the form elements on this occasion. If you remember,
I previously set all the labels in this form to behave as block level elements, forcing their
associated form controls onto a separate line. Obviously, I don’t want this to happen with radio
button labels, so wrapping the labels around the form controls prevents this.

The last thing you need to do is add a little bit of right margin to the radio buttons, in order to
provide so spacing between the labels.

#remember-me .radio {

 margin-right: 1em;

}

CHAPTER 7

192

Embellishments
The layout is now complete, but you can incorporate a few nice additions for more advanced
browsers. For instance, you could help users easily anchor themselves to the form field they are
filling in by changing the element’s background color when it receives focus:

Input[type="text"]:focus, textarea:focus {

 background: #ffc;

}

You can also harmonize the look of the text field and text area elements by giving them custom
borders. This is particularly useful for Firefox, which renders the bottom and right borders on
these elements as white, causing them to lose definition when on a white background (see Figure
7-7).

Figure 7-7. The bottom and right borders of text inputs and text areas in Firefox are white,
causing them to lose definition on white backgrounds

In this example, an attribute selector is used to target the text inputs as this style is mostly for the
benefit of Firefox, which understands this selector.

STYLING FORMS AND DATA TABLES

193

input[type="text"], textarea {

 border-top: 2px solid #999;

 border-left: 2px solid #999;

 border-bottom: 1px solid #ccc;

 border-right: 1px solid #ccc;

}

In this example, we’re not using any password fields. However, if you were creating a generic
form style for your entire site, you would need to include [type="password"] in the previous two
examples as well.

Required fields
Many forms contain fields that must be filled in. You can indicate these required fields by placing
styled text, or an asterisk, next to them. Because this information is emphasizing the field’s
required status, the most appropriate element for this information is an em or strong element:

 <div>

 <label for="author">Name:<em class="required">(required)/label>

 <input name="author" id="author" type="text" />

 </div>

You can then style this information however you want. In this example I’m reducing the font size
and making the text red:

.required {

 font-size: 0.75em;

 color:#760000;

}

And there you have it: a simple yet attractive-looking form layout using pure CSS.

Complicated form layout
For longer and more complicated forms, vertical space starts to become an issue, as does the
ease of scanning. To improve scanning and reduce the amount of vertical space used, it makes
sense to position the labels and form elements horizontally, rather than vertically above one

CHAPTER 7

194

another. Creating a form such as the one in Figure 7-8 is actually very simple and uses almost
exactly the same code as the previous example.

Figure 7-8. Horizontal form alignment

The only difference between this and the previous example is that, instead of setting the label to
be a block-level element, you float the labels left instead. You also need to give the label a width
so that all of the form elements line up nicely:

label {

 float: left;

 width: 10em;

 cursor: pointer;

}

If the form labels are likely to wrap onto multiple lines, it would be a sensible idea to clear the
container divs as well. This will prevent them from interfering with the next set of labels and
ruining your carefully crafted layout.

STYLING FORMS AND DATA TABLES

195

form div {

 clear: left;

}

Forms are rarely as simple as the one in Figure 7-8, and you will often need to create exceptions
to your basic form styling rules to handle things such as multiple form widgets on a single line or
columns of check boxes or radio buttons (see Figure 7-9). The next couple of sections will explain
how to handle these types of exceptions.

Figure 7-9. More complicated form layouts

Accessible date input
As you learned in the previous examples, form labels are important for the accessibility of your
forms. However, there are situations when you may not want to display a label for every element.
For instance, in Figure 7-9 you can see a group of form elements for collecting date information.
In this situation, visually displaying each label would be overkill, as it would split the date of birth
up into three separate entities rather than being perceived as a single entity. However, while you
may not want to display the labels, it is still important that the labels appear in the source code
and are available to screen readers.

CHAPTER 7

196

<div>

 <label for="dateOfBirth">Date of Birth:</label>

 <input name="dateOfBirth" id="dateOfBirth" type="text" />

 <label id="monthOfBirthLabel" for="monthOfBirth">

Month of Birth:</label>

 <select name="monthOfBirth" id="monthOfBirth">

 <option value="1">January</option>

 <option value="2">February</option>

 <option value="3">March</option>

 </select>

 <label id="yearOfBirthLabel" for="yearOfBirth">Year of Birth:</label>

 <input name="yearOfBirth" id="yearOfBirth" type="text" />

</div>

To create this layout, you first need to hide the “month of birth” and “year of birth” labels. Setting
the labels’ display property to none would stop the labels from displaying, but it would also
prevent many screen readers from accessing them. Instead, you can position the labels off
screen using a large negative text indent. In the generic form style we created earlier, labels have
been given a set width. To prevent the labels from affecting the layout, the width needs to be
zeroed down for these labels as well:

#monthOfBirthLabel, #yearOfBirthLabel {

 text-indent: -1000em;

 width: 0;

}

The various form controls can then be sized individually and given margins to control their
horizontal spacing:

input#dateOfBirth {

 width: 3em;

 margin-right: 0.5em;

}

STYLING FORMS AND DATA TABLES

197

select#monthOfBirth {

 width: 10em;

 margin-right: 0.5em;

}

input#yearOfBirth {

 width: 5em;

}

Multicolumn check boxes
Creating a two-column layout for large groups of check boxes or radio buttons is a little more
involved. Labels only work for individual elements, not groups of elements. Ideally, we would
wrap the whole group in a fieldset and use the legend to act like a label for the group.
Unfortunately, due to the inconsistent way browsers handle the positioning of legends, this is not
currently a practical solution. So until the browsers offer more consistent support, the best option
is to use a heading element instead.

To create the column effect, the check boxes are split into two sets, and each set is wrapped in a
div with a class of col. These elements are then grouped together by wrapping them in a
fieldset with a descriptive ID:

<fieldset id="favoriteColor">

 <h2>Favorite Color:</h2>

 <div class="col">

 <div>

 <label><input class="checkbox" id="red" name="red" type="checkbox"

value="red" />red</label>

 ...

 </div>

 </div>

 <div class="col">

 <div>

 <label><input class="checkbox" id="orange" name="orange"

type="checkbox" value="orange" />orange</label>

 </div>

 ...

 </div>

</fieldset>

CHAPTER 7

198

Because a generic fieldset style has already been created, the first thing you need to do is
override those styles, zeroing down the padding and margin, removing the borders and setting the
background color to be transparent:

fieldset#favoriteColor {

 margin: 0;

 padding: 0;

 border: none;

 background: transparent;

}

The heading is going to act like a label, so it needs to be floated left and given a width of 10 ems
like the other labels. The headline also needs to look like a label, so the font weight needs to be
set to normal, and the font size needs to be reduced.

#favoriteColor h2 {

 width: 10em;

 float: left;

 font-size: 1em;

 font-weight: normal;

}

The two-column layout can then be created by giving the divs a width and floating them left.
However, as all of the divs in this form have been cleared by default, we need to override that
declaration by using clear:none.

#favoriteColor .col {

 width: 8em;

 float: left;

clear: none;

}

STYLING FORMS AND DATA TABLES

199

 All the labels in this form have been floated left and set to be 10 ems wide. However, the labels
for the check boxes do not need to be floated, so we should override that declaration here.

#favoriteColor label {

float: none;

}

And there you have a relatively complex form layout. The basic form style takes care of the
general layout, and exceptions can be handled on an individual basis by overriding these styles.

Submit buttons
Forms are a great way of adding interactivity to your site and for posting data back to the server.
In order to activate the form, you therefore need some kind of button control. Normally, people
use an input element with the type value set to submit. Input buttons are the most common way
of submitting data to the server, but they are not without problems, not least the fact that you can’t
target them with just an element selector. You could target them with an attribute selector, but this
isn’t supported by older version of Internet Explorer, so your only option is to target them directly
with an ID or class selector. So instead of using an input element, why not use the button
element?

The button element has been gaining in popularity of late but is still relatively unknown and
underutilized. This is a shame as button elements give you a great deal of flexibility. For a start,
you can wrap button tags around an image and that image becomes your control (see Figure 7-
10).

<div>

<button type="submit">

</button>

</div>

Figure 7-10. Button element using a button image

CHAPTER 7

200

As buttons have some default styling, you will want to turn this off.

button {

 border: none;

 background: none;

 cursor: pointer;

}

Many operating systems, like OS X, prevent authors from changing the style of their input
buttons, preferring to keep consistency throughout the operating system. However, the button
element doesn’t suffer from these constraints. As such, it is possible to create fairly advanced
button styles purely using CSS. For instance, say you started with this simple submit button.

<p>

<button type="submit">Book Now »</button>

</p>

You could start by giving the button some explicit dimensions and a colored border. You could
then round the corners off using border-radius and apply a nice text shadow. Last, you could
apply a gradient background, either by using an image or possibly even using Webkit-specific
gradients. The result would look something like Figure 7-11.

button.two {

 width: 200px;

 height: 50px;

 border: 1px solid #989898;

 -moz-border-radius: 6px;

 -webkit-border-radius: 6px;

 border-radius: 6px;

 background: url(/img/button-bg.png) #c5e063 bottom left repeat-x;

 -moz-box-shadow: 2px 2px 2px #ccc;

 -webkit-box-shadow: 2px 2px 2px #ccc;

 box-shadow: 2px 2px 2px #ccc;

 color: #fff;

 font-size: 26px;

STYLING FORMS AND DATA TABLES

201

 font-weight: bold;

 text-shadow: 1px 1px 1px #666;

}

Figure 7-11. Button element using pure CSS

The main limitation with button elements is the way IE 6 and, to a lesser extent, IE 7 handle their
submission. Rather than submitting the contents of the value attribute, as other browsers do, IE 6
and IE 7 submit the contents of the element. Furthermore, if you have multiple buttons on a page,
IE 6 will submit the contents of all the buttons, rather than just the one that was clicked. As such,
if you wanted to use more than one button per page, you need to make sure that they all have the
same function, as you won’t be able to tell which one had been activated in older version of
Internet Explorer.

Form feedback
Forms will usually require some type of feedback message to highlight fields that have been
missed or incorrectly filled in. This is usually done by adding an error message next to the
appropriate field (see Figure 7-12).

Figure 7-12. Example of form feedback

To produce this effect, you could wrap your feedback text in a em and place it after the text input
in the source code. However, for everything to line up correctly, both the em and the preceding
input would need to be floated. This will have an effect on the behavior of the enclosing
paragraph, which in turn will have an effect on the whole layout. Furthermore, many screen
readers will ignore text between form elements, unless they are enclosed in a label. To avoid

CHAPTER 7

202

these problems, the best approach is to include the error message text inside the form label, and
then position it using CSS:

<div>

 <label for="email">Email Address:

 <em class="feedback">Incorrect email address. Please try again.

 </label>

 <input name="email" id="email" type="text" />

</div>

To position the feedback em, you first need to set the position of all of the paragraphs in the form
to relative, thereby setting up a new positioning context. You can then position the feedback em
absolutely, so it appears to the right of the text input. We know that the labels are 10 ems wide
and the text boxes are 20 ems wide, so we can set the left position of the feedback span to be 30
ems.

form div {

 position: relative;

}

form .feedback {

 position: absolute;

left: 30em;

 right :0;

 top: 0.5em;

}

Rather annoyingly, IE 6 and below incorrectly set the width of the feedback em to be the minimum
width possible. To get around this problem, you need to set an explicit width for this browser. One
way to use conditional comments as detailed in Chapter 8:

form .feedback{

 width: 10em;

}

STYLING FORMS AND DATA TABLES

203

You can then apply whatever styling you want to your feedback messages. In this case, I have
made the text bold red and have applied a warning image to the left side of the message:

form div {

 position: relative;

}

.feedback {

 position: absolute;

left: 30em;

 right :0;

 top: 0.5em;

 font-weight: bold;

 color: #760000;

 padding-left: 18px;

 background: url(/img/error.png) no-repeat left top;

}

You could also use this technique to provide positive feedback or advice on how to fill out
particular parts of the form.

Summary
In this chapter, you have learned how different form layouts can work in different situations. You
can now lay out complicated forms using CSS, without harming a single table in the process. You
have learned how tables should be used—for data rather than layout—and have learned that
data table design can be fun.

In the next chapter, you will use everything you have learned so far to start building CSS-based
layouts.

CHAPTER 1

4

205

Chapter 8

Layout

One of the major benefits of CSS is the ability to control page layout without needing to use
presentational markup. However, CSS layout has gained an undeserved reputation for being
difficult, particularly among those new to the language. This is partly due to browser
inconsistencies, but mostly due to a proliferation of different layout techniques available on the
Web. It seems that each CSS author has their own preferred way of creating multicolumn layouts,
and new CSS developers will often use a technique without really understanding how it works.
This situation has been exacerbated by the rise of so-called CSS frameworks, which aim to make
CSS layout easier by creating a strong coupling between markup and presentation—the very
reason we ditched table-based layout in the first place. This black box approach to CSS may get
quick results but ultimately stunts the developer’s understanding of the language and ability to
implement changes.

All these CSS layout techniques rely on three basic concepts: positioning, floating, and margin
manipulation. The different techniques really aren’t that different, and if you understand the core
concepts, it is relatively easy to create your own layouts with little or no hassle. In fact, layout is
generally the easiest part of CSS; it’s all the tweaking that takes time.

In this chapter, you will learn about

• Horizontally centering a design on a page

• Creating two- and three-column float-based layouts

• Creating fixed-width, liquid, and elastic layouts

• Creating equal height columns

• CSS frameworks versus CSS systems

CHAPTER 8

206

Planning your layout
When it’s time to start turning your designs into fully functional templates, it is very tempting to
jump straight in and start marking up your page or slicing up your images. However, you can find
that you’ve painted yourself into a corner very quickly. Instead, a small amount of planning can
save a lot of hassle further down the line. Or, as the saying goes, “Measure twice; cut once.”

The first step in creating a scalable and easy to maintain CSS system is to review your designs,
looking for repeating patterns. These could be patterns in the structure of the page or the way
certain elements are repeated across the site. You shouldn’t be too concerned with the visual
representation at this stage. Instead, look at the structure and meaning. I like to do this by printing
out each design, spotting the patterns and then scribbling mark-up notes on each page (see
Figure 8-1). However, I’ve seen people do this by annotating their Photoshop files or grey-box
designs.

Figure 8-1. Markup guides

Begin by breaking your pages into major the structural areas like the wrapper, header, content
area, and footer. These areas tend to be consistent across the whole site and rarely change. To
use an architectural analogy, you could think of these as the external walls of the building.

Then, turn your attention to the content area itself, and start building out your grid structure. How
many different content areas does the design have, and how do they differ? Are the content
areas actually that different, or can they be treated the same from a layout perspective? Most
designs will have only a couple of unique content areas, so look for shared characteristics rather
than the visual representation. You could consider these content areas as the internal load-
bearing walls of your construction.

LAYOUT

207

Finally, we need to start looking at the different layout constructs that appear in the various
content areas. Do you need to present certain types of information in two, three, or four columns?
Unlike the previous step, these layout constructs tend to be very flexible and change from page to
page. So you could think of them like the dry wall partitions in your building. Combined with the
previous step, these construct help form the floor plan of each of your pages. At this point, reach
for the graph paper and colored pencils, and start mapping the structure and dimensions in more
detail (see Figure 8-2).

Figure 8-2. Working out dimensions on graph paper

With the structure in place, you can now turn your attention to the different kinds of content. Is this
is a news story, an article, or a press release? Give each block a meaningful name and then see
how they relate to each other. It may turn out that there’s actually very little difference between
your news stories and press releases, in which case, combining them into a single content type
would make sense.

Look at how each content block is structured, and see if you can see patterns emerging across
different types. For instance, you may notice that both your articles and news stories have a
prominent header and footer, so identify them as such. It really doesn’t matter if the headers and
footers look different, as you can style them later based on context. The same is true of things
like error messages, search boxes, and menu items. Try to keep the class names as generic as
possible, and style them based on context.

Once I’ve got patterns and naming conventions sorted, I find it useful to start defining the
elements I’m going to use. For example, a list of links might be an unordered list, while a story
might to be a div with an h2, a paragraph, and an anchor element. It’s much easier to do this up
front, with a few of your colleagues, than on the fly. I also find it useful to jot down color codes,

CHAPTER 8

208

dimensions, and anything else that will help during production. Again, you can make these
annotations on a printout of the designs for quick reference, as shown in Figure 8-3.

Figure 8-3. Working out the details of the different content types

Setting the foundations
Let’s assume that we’re going to be building a classic three-column blog template, like the one
shown in Figure 8-4.

LAYOUT

209

Figure 8-4. Classic, three-column layout

By analyzing the design, it’s clear that we’re going to need a wrapper element to center the
design, along with a header, content area, and footer. The markup would, therefore, look
something like this:

<body>

 <div class="wrapper">

 <div class="header”>

 <!--Your header content goes here-->

 </div>

CHAPTER 8

210

 <div class="content>

 <!--Your page content goes here-->

 </div>

 <div class="footer">

 <!--Your footer content goes here-->

 </div>

 </div>

</body>

As these last three areas are enclosed inside the wrapper, let’s start by styling the wrapper
element.

Centering a design using margins
Long lines of text can be difficult and unpleasant to read. As modern monitors continue to grow in
size, the issue of screen readability is becoming increasingly important. One way designers have
attempted to tackle this problem is by centering their designs. Rather than spanning the full width
of the screen, centered designs span only a portion of the screen, creating shorter and easier-to-
read line lengths.

Say you have a typical layout where you wish to center a wrapper div horizontally on the screen:

<body>

 <div class="wrapper">

 </div>

</body>

To do this, you simply define the width of your wrapper div and set the horizontal margins to
auto:

.wrapper {

 width: 920px;

 margin: 0 auto;

}

LAYOUT

211

In this example, I have decided to fix the width of my wrapper div in pixels, so that it fits nicely on
an 1024×768–resolution screen. However, you could just as easily set the width as a percentage
of the body or relative to the size of the text using ems.

This works on all modern browsers. However, IE 5.x and IE 6 in quirks mode don’t honor the
margin:auto declaration. Luckily, IE misunderstands text-align: center, centering everything
instead of just the text. You can use this to your advantage by centering everything in the body
tag, including the wrapper div, and realigning the contents of the wrapper back to the left:

body {

 text-align: center;

}

.wrapper {

 width: 920px;

 margin: 0 auto;

 text-align: left;

}

Using the text-align property in this way is a hack—but a fairly innocuous hack that has no
adverse effect on your site. The wrapper now appears centered in older versions of IE as well as
more standards-compliant browsers (see Figure 8-5).

CHAPTER 8

212

Figure 8-5. Centering a design using margin:auto

Float-based layouts
There are a few different ways of doing CSS-based layout, including absolute positioning and
using negative margins. I find float-based layouts the easiest and most reliable method to use. As
the name suggests, in a float-based layout, you simply set the width of the elements you want to
position and then float them left or right.

Because floated elements don’t take up any space in the flow of the document, they no longer
appear to exert any influence on the surrounding block boxes. To get around this, you will need to
clear the floats at various points throughout the layout. Rather than continuously floating and
clearing elements, it is quite common to float nearly everything and then clear once or twice at
strategic points throughout the document, such as the page footer. Alternatively, you could use
the overflow method to clear the contents of particular elements. This is my current preferred
method, so it’s the one I’ll be using throughout the rest of these examples.

LAYOUT

213

Two-column floated layout
To create a two-column layout inside our content area, we first need to create our basic HTML
structure.

<div class="content">

<div class="primary">

 <!-- main content goes here -->

</div>

<div class="secondary”>

 <!--navigation and secondary content goes here -->

</div>

</div>

The secondary content area for this design—including the site navigation—will be on the left side
of the page, while the primary content will be on the right. However, I have chosen to put the
primary content area above the secondary content area in the source order for usability and
accessibility reasons. First, the primary content is the most important thing on the page and so
should come first in the document. Second, there is no point forcing screen reader users to trawl
through navigation links and less important content like site promotions before they get to the
primary content if they don’t have to.

Normally, when people create float-based layouts, they float both columns left and then create a
gutter between the columns using margin or padding. When using this approach, the columns are
packed tightly into the available space with no room to breathe. Although this wouldn’t be a
problem if browsers behaved themselves, buggy browsers can cause tightly packed layouts to
break, forcing columns to drop below each other.

This can happen on IE because it honors the size of an element’s content, rather than the size of
the element itself. In standards-compliant browsers, if the content of an element gets too large, it
will simply flow out of the box. However, on IE, if the content of an element becomes too big, the
whole element expands. This can be triggered by the smallest things, such as some of your text
being set in italic. If this happens in very tightly packed layouts, there is no longer enough room
for the elements to sit next to each other, and one of the floats will drop. Other IE bugs, such as
the 3-pixel text jog bug and the double-margin float bug (see Chapter 9), along with various
browser-rounding errors can also cause float dropping.

To prevent your layouts from breaking, you need to avoid cramming floated layouts into their
containing elements. Rather than using horizontal margin or padding to create gutters, you can

CHAPTER 8

214

create a virtual gutter by floating one element left and one element right (see Figure 8-6). If one
element inadvertently increases in size by a few pixels, rather than immediately running out of
horizontal space and dropping down, it will simply grow into the virtual gutter.

Figure 8-6. Creating a two-column layout using floats

The CSS for achieving this layout is very straightforward. You simply set the desired width of
each column and then float the secondary content left and the primary content right. You also
need to add a small amount of padding to the primary content to prevent the enclosed text being
flush to the right hand edge of the element. You’ll notice that I’ve also added display:inline to
all the floated items. This is a defensive measure to prevent the double margin float bug in IE
(more on that in the next chapter).

.content .primary {

 width: 650px;

 padding-right: 20px;

 float: right;

 display: inline;

}

.content .secondary {

 width: 230px;

 float: left;

 display: inline;

}

LAYOUT

215

As the total width available is 920 pixels, these dimensions leave a 20-pixel wide virtual gutter
between each floated element. As mentioned previously, doing this protects the layout from float
drops due to accidental content expansion.

Because these elements are floated, they no longer take up any space in the flow of the
document, causing the footer to rise up. In order to prevent this, you need to clear the floated
items by applying the overflow method to their parent element, in this case the content div.

.content {

 overflow: hidden;

}

And there you have it: a simple two-column CSS layout (see Figure 8-7).

Figure 8-7.Floated two-column layout

You’ll notice that rather than creating two separate elements called primary-content and
secondary-content, I’ve simply used the terms primary and secondary. I’ve then used the fact
that these two elements are nested within the content element to create the association. This has
a couple of benefits. First off, it means that you don’t have to keep creating new class names for

CHAPTER 8

216

every element you want to style. Instead, you can use the cascade to help you out. Secondly, and
arguably more importantly, you can use the same primary and secondary classes more than
once, creating a very flexible naming system. For instance, say we wanted to create a three-
column layout instead of just a two-column one.

Three-column floated layout
The HTML needed to create a three-column layout is very similar to that used by the two-column
layout, the only difference being the addition of two new divs inside the primary content div: one
for the main content and one for the secondary content. Therefore, we can reuse our flexible
primary and secondary class names again.

<div class="content">

 <div class="primary">

 <div class="primary">

 <-- your primary primary content goes here -->

 </div>

 <div class="secondary">

 <-- your secondary primary content goes here -->

 </div>

 </div>

 <div class="secondary”>

 <!--navigation and secondary content goes here -->

 </div>

</div>

Using the same CSS as the two-column technique, you can float the secondary content left and
the primary content right. Then, inside the primary content div, you can float the primary div left
and the secondary div right (see Figure 8-8). This essentially divides the primary content area in
two, creating a three-column effect.

LAYOUT

217

Figure 8-8. Creating a three-column layout by dividing the content column into two columns

As before, the CSS for this is very simple. You just set your desired widths and then float the
primary div left and the secondary div right, creating a 20-pixel gap in the middle:

.content .primary .primary {

 width: 400px;

 float: left;

 display: inline;

}

.content .primary .secondary {

 width: 230px;

 float: right;

 display: inline;

}

One thing you’ll notice is that the right-hand padding we gave to the primary div in the in the first
example is now being applied to our new primary div in the second example. As such, we need

CHAPTER 8

218

to remove the pading from the more general style and apply it to the more specific style.

.content .primary {

 width: 670px; /* width increased and padding removed*/

 float: right;

 display: inline;

}

.content .secondary {

 width: 230px;

 float: left;

 display: inline;

}

.content .primary .primary {

 width: 400px;

 float: left;

 display: inline;

}

.content .primary .secondary {

 width: 230px;

 padding-right: 20px; /* padding applied here instead*/

 float: right;

 display: inline;

}

This leaves you with a nice and solid three-column layout (see Figure 8-9).

LAYOUT

219

Figure 8-9. Three-column layout using floats

Fixed-width, liquid, and elastic layout
So far, all the examples have used widths defined in pixels. This type of layout is known as fixed-
width layout. Fixed-width layouts are very common, as they give the developer more control over
layout and positioning. If you set the width of your design to be 960 pixels wide, it will always be
960 pixels. If you then want a branding image spanning the top of your design, you know it needs
to be 960 pixels wide to fit. Knowing the exact width of each element allows you to lay them out
precisely and know where everything will be. This makes fixed-width layout the easiest and
therefore most common approach.

However, fixed-width designs have their downsides. First, because they are fixed, they are
always the same size no matter what your window size. As such, they don’t make good use of the
available space. On large screen resolutions, designs created for 1024×760 can appear tiny and
lost in the middle of the screen. Conversely, a design created for a 1024×760 screen will cause
horizontal scrolling (or crawling) on smaller screen resolutions. With an increasingly diverse range
of screen sizes to contend with, fixed-width designs don’t adapt well to the flexible nature of the
Web. As such, they often feel like a poor compromise.

Another issue with fixed-width design revolves around line lengths and text legibility. Fixed-width
layouts usually work well with the browser default text size. However, you only have to increase

CHAPTER 8

220

the text size a couple of steps before sidebars start running out of space and the line lengths get
too short to comfortably read.

To work around these issues, you could choose to use liquid or elastic layout instead of fixed-
width layout.

Liquid layouts
With liquid layouts, dimensions are set using percentages instead of pixels. This allows liquid
layouts to scale in relation to the browser window. As the browser window gets bigger, the
columns get wider. Conversely, as the window gets smaller, the columns will reduce in width.
Liquid layouts make for very efficient use of space, and the best liquid layouts aren’t even
noticeable.

However, liquid layouts are not without their own problems. At small window widths, line lengths
can get incredibly narrow and difficult to read. This is especially true in multicolumn layouts. As
such, it may be worth adding a min-width in pixels or ems to prevent the layout from becoming
too narrow. However, set the min-width too large and your liquid designs inherit the same
constraints as their fixed-width cousins.

Conversely, if the design spans the entire width of the browser window, line lengths can become
long and difficult to read. You can do a couple of things to help avoid this problem. First, rather
than spanning the whole width, you could make the wrapper span just a percentage—say, 85
percent. You could also consider setting the internal padding and margins as percentages as
well. That way, the padding and margins will increase in width in relation to the window size,
stopping the columns from getting too wide, too quickly. Last, you should add a maximum width
on the wrapper to prevent the content from getting ridiculously wide on oversized monitors.

You can use these techniques to turn the previous fixed-width, three-column layout into a fluid,
three-column layout. Start by setting the width of the wrapper as a percentage of the overall width
of the window. Most people will pick an arbitrary size based on what looks good on their screens,
and that’s perfectly fine. However if you want to be more precise, take a look at your browser
stats to calculate the most common window size and then pick a wrapper percentage that
matches how the fixed width version would look at that size. A good tool for this is Liquid Fold
(http://liquidfold.net/). For example, if your designer used a width of 960 pixels and the
majority of your users have their browser windows set to 1250 pixels, the percentage to use
would be (960 ÷ 1250) × 100 = 76.8 percent.

Next, set the width of the primary and secondary content areas as a percentage of the wrapper
width. In the previous example, the width of our primary content div was 670 pixels. As the total
width was 920 pixels, this works out as 72.82 percent. Similarly, the width of the secondary
content div works out at exactly 25 percent. This leaves a 2.18 percent virtual gutter between the

http://liquidfold.net

LAYOUT

221

navigation and the wrapper to deal with any rounding errors and width irregularities that may
occur:

.wrapper {

 width: 76.8%;

 margin: 0 auto;

 text-align: left;

}

.content .primary {

 width: 72.82%;

 float: right;

 display: inline;

}

.content .secondary {

 width: 25%;

 float: left;

 display: inline;

}

You then need to set the widths of the columns inside the primary content area. This gets a bit
trickier, because the widths of the content divs are based on the width of the primary content
element and not the overall wrapper. So this time, the width of the primary div is 400 pixels,
which works out to be 59.7 percent of the parent element. Similarly, the width of the secondary
div works out to be 34.33 percent. Finally, we still need a 20-pixel gutter, which works out at 2.63
percent of the parent element.

.content .primary .primary {

 width: 59.7%;

 float: left;

 display: inline;

}

CHAPTER 8

222

.content .primary .secondary {

 width: 34.33%;

 padding-right: 2.63%;

 float: right;

 display: inline;

}

This produces a liquid layout that is optimal at window size of 1250 pixels but is comfortable to
read at both larger and smaller screen resolutions (see Figure 8-10).

Figure 8-10. Three-column liquid layout at 800×600, 1024×768, and 1250×900

LAYOUT

223

Because this layout scales so nicely, there isn’t any need to add a max-width property. However,
to ensure the lines of text remain a readable length, it’s always a good idea to add a max-width in
ems. The layout does start to get a little cramped at smaller window sizes, so I’m going also to
add a min-width in ems as well.

.wrapper {

 width: 76.8%;

 margin: 0 auto;

 text-align: left;

 max-width: 125em;

 min-width: 62em;

}

And there you have it, a nice, flexible, liquid layout.

Elastic layouts
While liquid layouts are useful for making the most of the available space, line lengths can still get
uncomfortably long on high-resolution monitors. Conversely, lines can become very short and
fragmented in narrow windows or when the text size is increased a couple of steps. If these
limitations are of concern, elastic layouts may be your solution.

Elastic layouts work by setting the width of elements relative to the size of the font instead of the
width of the browser. By setting widths in ems, you ensure that when the font size is increased
the whole layout scales. This allows you to keep line lengths to a readable size and is particularly
useful for people with reduced vision or cognitive disorders.

Like other layout techniques, elastic layouts are not without their issues. Elastic layouts share
some of the problems with fixed-width layouts, such as not making the most use of the available
space. Also, because the whole layout increases when the text size is increased, elastic layouts
can become much wider than the browser window, forcing the appearance of horizontal scroll
bars. To combat this, it may be worth adding a max-width of 100% to the wrapper div; max-width
wasn’t supported by IE6 and below, but it is supported by newer versions. If you need to support
max-width in IE 6, you can use JavaScript as well.

Elastic layouts are much easier to create than liquid layouts as all of the HTML elements
essentially stay in the same place relative to each other; they just all increase in size. Turning a
fixed-width layout into an elastic layout is a relatively simple task. The trick is to set the base font
size so that 1 em roughly equals 10 pixels.

CHAPTER 8

224

The default font size on most browsers is 16 pixels. Ten pixels works out at 62.5 percent of 16
pixels, so setting the font size on the body to 62.5% does the trick:

body {

 font-size: 62.5%;

 text-align: center;

}

Because 1 em now equals 10 pixels at the default font size, we can convert our fixed-width layout
into an elastic layout relatively easily. In previous editions of this book, I recommended setting all
the widths in ems. However, my esteemed colleague and technical reviewer Natalie Downe
suggested keeping the internal widths as percentages and only setting the wrapper width in ems.
That way, the internal widths will still size themselves relative to the font size. This allows you to
change the overall size of the layout without having to change the width on each individual
element, making for a more flexible and maintainable solution.

.wrapper {

 width: 92em;

 max-width: 95%;

 margin: 0 auto;

 text-align: left;

}

.content .primary {

 width: 72.82%;

 float: right;

 display: inline;

}

.content .secondary {

 width: 25%;

 float: left;

 display: inline;

}

LAYOUT

225

.content .primary .primary {

 width: 59.7%;

 float: left;

 display: inline;

}

.content .primary .secondary {

 width: 34.33%;

 padding-right: 2em;

 float: right;

 display: inline;

}

This produces a layout that looks identical to the fixed-width layout at regular text sizes (see
Figure 8-11), but scales beautifully as the text size is increased (see Figure 8-12).

Figure 8-11. Elastic layout at the default text size

CHAPTER 8

226

Figure 8-12. Elastic layout after the text size has been increased a few times

With the increasing prevalence of page zooming in modern browsers, some people have begun
to question the need for elastic layouts. However, until all browsers support page zooming by
default, you may still want to consider elastic layouts for older browsers.

Liquid and elastic images
If you choose to use a liquid or an elastic layout, fixed-width images can have a drastic effect on
your design. When the width of the layout is reduced, images will shift in relation to it and may
interact negatively with each other. Images will create natural minimum widths, preventing some
elements from reducing in size. Other images will break out of their containing elements,
wreaking havoc on finely tuned designs. Increasing the width of the layout can also have dramatic
consequences, creating unwanted gaps and unbalancing designs. But never fear—there are a
few ways to avoid such problems.

For images that need to span a wide area, such as those found in the site header or branding
areas, consider using a background image rather than an image element. As the branding
element scales, more or less of the background image will be revealed:

#branding {

 height: 171px;

 background: url(/img/branding.png) no-repeat left top;

}

<div id="branding"></div>

LAYOUT

227

If the image needs to be on the page as an image element, try setting the width of the container
element to 100% and the overflow property to hidden. The image will be clipped on the right-hand
side so that it fits inside the branding element but will scale as the layout scales:

#branding {

 width: 100%;

 overflow: hidden;

}

<div id="branding">

</div>

For regular content images, you will probably want them to scale vertically as well as horizontally
to avoid clipping. You can do this by adding an image element to the page without any stated
dimensions. You then set the percentage width of the image, and add a max-width the same size
as the image to prevent pixelization.

For example, say you wanted to create a news story style with a narrow image column on the left
and a larger text column on the right. The image needs to be roughly a quarter of the width of the
containing box, with the text taking up the rest of the space. You can do this by simply setting the
width of the image to 25% and then setting the max-width to be the size of the image, in this case
200 pixels wide:

.news img {

 width: 25%;

 max-width: 200px;

 float: left;

 display: inline;

 padding: 2%;

}

 .news p {

 width: 68%;

 float: right;

 display: inline;

 padding: 2% 2% 2% 0;

}

CHAPTER 8

228

As the news element expands or contracts, the image and paragraphs will also expand or
contract, maintaining their visual balance (see Figure 8-13). However, on standards-compliant
browsers, the image will never get larger than its actual size.

Figure 8-13. Giving images a percentage width allows them to scale nicely in relation to their
surroundings

Faux columns
You may have noticed that the navigation and secondary content areas on all these layouts have
been given a light gray background. Ideally, the background would stretch the full height of the
layout, creating a column effect. However, because the navigation and secondary content areas
don’t span the full height, neither do their backgrounds.

To create the column effect, you can make fake columns by applying a repeating background
image to an element that does span the full height of the layout, such as a wrapper div. Dan
Cederholm coined the term “faux column” to describe this technique.

Starting with the fixed-width, two-column layout, you can simply apply a vertically repeating
background image, the same width as the navigation area, to the wrapper element (see Figure 8-
14):

#wrapper {

 background: #fff url(/img/nav-bg-fixed.gif) repeat-y left top;

}

LAYOUT

229

Figure 8-14. Faux fixed-width column

For the three-column fixed width layout, you can use a similar approach. This time, however, your
repeating background image needs to span the whole width of the wrapper and include both
columns (see Figure 8-15). Applying this image in the same way as before creates a lovely faux
two-column effect (see Figure 8-16).

Figure 8-15. Background image used to create the faux three-column effect

Figure 8-16. Faux three-column effect

Creating faux columns for fixed-width designs is relatively easy, as you always know the sizes of
the columns and their positions. Creating faux columns for fluid layouts is a little more

CHAPTER 8

230

complicated; the columns change shape and position as the browser window is scaled. The trick
to fluid faux columns lies in the use of percentages to position the background image.

If you set a background position using pixels, the top-left corner of the image is positioned from
the top-left corner of the element by the specified number of pixels. With percentage positioning,
it is the corresponding point on the image that gets positioned. So if you set a vertical and
horizontal position of 20 percent, you are actually positioning a point 20 percent from the top left
of the image, 20 percent from the top left of the parent element (see Figure 8-17).

Figure 8-17. When positioning using percentages, the corresponding position on the image is
used

Positioning background images using percentages can be very useful, as it allows you to create
background images with the same horizontal proportions as your layout and then position them
where you want the columns to appear.

To create a faux column for the secondary content area, you start by creating a very wide
background image. In this example, I have created an image that is 4000 pixels wide and 5 pixels
high. Next, you need to create an area on the background image to act as the faux column. The
secondary content area has been set to be 25 percent of the width of the wrapper, so you need to
create a corresponding area on the background image that is 25 percent wide. For a background
image that is 4000 pixels wide, the faux column part of the image needs to be 1000 pixels wide.
Output this image as a GIF, making sure that the area not covered by the faux column is
transparent.

The right edge of the faux column is now 25 percent from the left side of the image. The right
edge of the secondary content area is 25 percent from the left edge of the wrapper element. That
means if you apply the image as a background to the wrapper element, and set the horizontal
position to be 25 percent, the right edge of the faux column will line up perfectly with the right
edge of the navigation element.

LAYOUT

231

.wrapper {

 background: #fff url(/img/secondary-faux-column.gif) repeat-y 25% 0;

}

You can create the background for the primary content area using a similar method. The left edge
of this faux column should start 72.82 percent from the left edge of the image, matching the
position of the primary content element relative to the wrapper. Because the wrapper element
already has a background image applied to it, you will need to add a second wrapper element
inside the first. You can then apply your second faux column background image to this new
wrapper element.

.inner-wrapper {

 background: url(/img/primary-faux-column.gif) repeat-y 72.82% 0;

}

If you have worked out your proportions correctly, you should be left with a beautiful three-column
liquid layout with columns that stretch the height of the wrapper (see Figure 8-18).

Figure 8-18. Faux three-column layout

Equal-height columns
As well as creating columns as part of your main layout, you may want to create equal-height
columns elsewhere in your design, like the ones in Figure 8-19. While this is easy to accomplish
using tables, it’s a little trickier in CSS.

CHAPTER 8

232

Figure 8-19. Three, equal-height columns

Let’s start with the mark-up.

<div class="wrapper">

 <div class="box">

 <h1>Andy Budd</h1>

 <p>...</p>

 <div class="bottom"></div>

</div>

 <div class="box">

 <h1>Richard Rutter</h1>

 <p>...</p>

 <div class="bottom"></div>

</div>

LAYOUT

233

 <div class="box">

 <h1>Jeremy Keith</h1>

 <p>...</p>

 <div class="bottom"></div>

 </div>

</div>

For this example, you are going to need three divs, one for each of the three columns. Inside
each div, you’ll need a heading, some copy, and an empty div to use as a hook for the bottom
corners. All three divs are then enclosed in a wrapper div, which we will use to constrain the
height. We can now start styling our boxes.

.wrapper {

 width: 100%;

}

.box {

 width: 250px;

 margin-left: 20px;

 float: left;

 display: inline;

 padding: 20px;

 background: #89ac10 url(/img/top.gif) no-repeat left top;

}

You will see from Figure 8-20 that this leaves us with three, uneven columns.

CHAPTER 8

234

Figure 8-20. The three columns before the main technique being applied

The trick to this technique is to give each box a large amount of bottom padding and then remove
this height with a similar amount of negative margin. This causes each column to overflow the
wrapper element (see Figure 8-21). If you then set the overflow property of the wrapper to
hidden, the columns get clipped at their tallest point. In this example, I’m giving each element a
bottom padding of 520 pixels and a bottom margin of 500 pixels. The 20 pixels difference forms
the visible padding at the bottom of each box.

.wrapper {

 width: 100%;

 overflow: hidden;

}

.box {

 width: 250px;

 padding-left: 20px;

 padding-right: 20px;

 padding-top: 20px;

 padding-bottom: 520px;

 margin-bottom: 500px;

 margin-left: 20px;

 float: left;

 display: inline;

 background: url(/img/top.gif) #89ac10 top left no-repeat;

}

LAYOUT

235

Figure 8-21. The red border shows the bounds of the wrapper div, so you can see how the three
colums flow out of this element

To position the bottom of the columns in the right place, you need to align them with the bottom of
the wrapper element. To do this, you first need to set the positioning context by giving the
wrapper a position of relative. You can then set to position of the empty divs to be absolute
and set their bottom properties to be zero. Now, all you need to do is give the elements the
correct width and height and apply the bottom image as a background.

.wrapper {

 width: 100%;

 overflow: hidden;

 position: relative;

}

.box {

 width: 250px;

 padding-left: 20px;

 padding-right: 20px;

 padding-top: 20px;

CHAPTER 8

236

 padding-bottom: 520px;

 margin-bottom: 500px;

 margin-left: 20px;

 float: left;

 display: inline;

 padding: 20px;

 background: url(/img/top.gif) #89ac10 top left no-repeat;

}

.bottom {

 position: absolute;

 bottom: 0;

 height: 20px;

 width: 290px;

 background: url(/img/bottom.gif) #89ac10 bottom left no-repeat;

 margin-left: -20px;

}

The result is a three-column layout that retains the height of the longest column, as shown in
Figure 8-19. Neat, huh?

CSS 3 columns
CSS 3 also gives us the ability to create equal-height text columns, as shown in Figure 8-22. This
is achieved through the column-count ,column-width and column-gap properties.

LAYOUT

237

Figure 8-22. Text columns using the CSS 3 column properties

Say you start with the following markup:

<h1>Socrates</h1>

<div class="col">

 <p>After philosophizing for a while...</p>

</div>

Applying these rules will create a three-column layout where each column is 14 ems wide and
has a 2-em gap between it and the next columns. One of the nice features of CSS columns is
what happens if the available space becomes smaller than the width of the defined columns.
Rather than the columns wrapping, as you’d get if you were using floats, the column count simply
reduces. So if there weren’t enough space for three columns, you would reduce down to two.

.col {

 -moz-column-count: 3;

 -moz-column-width: 14em;

 -moz-column-gap: 2em;

 -moz-column-rule: 1px solid #ccc;

 -webkit-column-count: 3;

CHAPTER 8

238

 -webkit-column-width: 14em;

 -webkit-column-gap: 2em;

 -webkit-column-rule: 1px solid #ccc;

 column-count: 3;

 column-width: 14em;

 column-gap: 2em;

 column-rule: 1px solid #ccc;

}

As you can probably see from the preceding code, CSS columns aren’t widely supported yet. As
such, you need to back up the regular code with the use of browser-specific extensions.

CSS Frameworks vs. CSS Systems
In the programming world, frameworks like Rails or Django take common patterns in web
development, such as adding records to a database, and abstract them into a simple set of
reusable components. This abstraction allows developers to build fairly sophisticated applications
without needing to engineer these functions from scratch. Unlike a library of stand-alone
functions, frameworks tend to be highly integrated. As such, frameworks are abstracted to such a
degree that it’s possible, although not desirable, to build entire applications without needing to
understand the parent language.

Over the last couple of years, we’ve slowly seen the rise of so-called CSS frameworks. These
frameworks aim to take some of the drudgery out CSS and help users create a variety of
common layouts without needing to edit the underlying CSS. Instead, these frameworks
encourage developers to use a series of markup patterns and naming conventions and then
manage the layout behind the scenes. The three most popular frameworks are YUI Grids,
Blueprint, and 960 (see Figure 8-23), although there are several others to choose from.

LAYOUT

239

CHAPTER 8

240

LAYOUT

241

Figure 8-23. The YUI, Blueprint, and 960 web sites

These frameworks offer a number of useful productivity benefits including global style resets,
sitewide typographical handling, and consistent form treatment—things you will need on the
majority of your projects. However, frameworks also change the way you write your markup,
losing the important separation of presentation from meaning. For instance, the markup used in
the Blueprint framework is clearly presentational in nature, talking, as it does, in terms of columns
and column spans.

CHAPTER 8

242

<div class="column span-24">

<!-- header -->

</div>

<div class="column span-4">

<!-- left sidebar -->

</div>

<div class="column span-16">

<!-- main content -->

</div>

<div class="column span-4 last">

<!-- right sidebar -->

</div>

By using frameworks to control layout, developers are forced to use a presentational style of
markup that more closely resembles table-based design. In fact, you could argue that tables are
better than CSS frameworks, because tables have the same ridged, presentational mark-up
without the extra CSS to download. Frameworks also force the developer to learn not only the
underlying language but the framework as well. Often this doesn’t happen, and the developer is
left with a partial understanding of both.

Frameworks have another disadvantaged in the fact that they enforce a specific grid structure on
your designs. This is fine if your designs happen to fit the widths and margins defined by the
framework. However, just as it’s unacceptable for your programming framework to dictate the
user experience of your website, it’s unacceptable for your CSS framework to dictate the design
of your site. By selecting a specific framework, the danger is that you’ll end up using it for every
project and thus painting yourself into a corner. Or, as the saying goes, if you only have a
hammer, everything looks like a nail.

These problems become evident when you understand where frameworks came from. Rather
than being designed from scratch as a flexible layout system for any possible design, most were
created for the use on specific sites like Yahoo or the Laurence Kansas Journal. These sites
already had well-defined grid structures and style guides, so the developers knew that every new
page would follow the same pattern. Over time, the developers found other uses for these
systems, so they abstracted them and released them to the general public. However, the focus of
these frameworks on their original sites is still evident in their design.

So how do we get the productivity benefits from CSS frameworks without the obvious
disadvantages? This is where the concept of CSS systems comes in. A CSS system is
essentially a toolbox of reusable styles and markup patterns that can be used to develop site-
specific frameworks. This toolbox could include your global resets, typographic styles, and form
treatments, along with markup patterns for common HTML widgets such as sign-up forms,
calendar tables, and navigation lists. You can then use the techniques you’ve learned in this book

LAYOUT

243

to develop a system for your clients that acts like a customized framework, complete with all the
different layout options they will need. This process initially involves a little more work on the your
part, but it provides all the benefits of a CSS framework without the pitfalls.

Summary
In this chapter, you learned how to create simple two- and three-column fixed-width layouts using
floats. You then learned how these layouts could be converted into liquid and elastic layouts with
relative ease, as well as exploring some of the problems associated with these layouts and how
setting maximum widths in ems or pixels can offer solutions. You also saw how to create full
height column effects on both fixed-width and flexible layouts, using vertically repeating
background images. This chapter also touched on some of the techniques used to create CSS-
based layouts. However, there are a lot of techniques out there, enough to fill a whole book of
their own. Last, you learned some of the dangers inherent in CSS frameworks and the
importance of developing your own CSS system instead.

One of the big problems developers face with CSS layouts is that of browser inconsistency. To
get around browser-rendering issues, you need to have a good understanding of the various bugs
and how to fix them. In the next chapter, you will learn about some of the better-known browser
bugs along with the fundamentals of CSS debugging.

CHAPTER 1

4

245

Chapter 9

Bugs and Bug Fixing

Compared to many programming languages, CSS is a relatively simple language to learn. The
syntax is straightforward, and due to its presentational nature, there is no complicated logic to
grapple with. The difficulties start when it comes time to test your code on different browsers.
Browser bugs and inconsistent rendering are major stumbling blocks for most CSS developers.
Your designs look fine on one browser, but your layout inexplicably breaks on another.

The misconception that CSS is difficult comes not from the language itself, but the hoops you
need to jump through to get your sites working in older browsers. Bugs are difficult to find
information on, poorly documented, and often misunderstood. Hacks are seen by many as magic
bullets—arcane sigils with exotic names that, when applied to your code, will magically fix your
broken layouts. Hacks are definitely potent tools in your armory, but they need to be applied with
care and generally as a last resort. A much more important skill is the ability to track, isolate, and
identify bugs. Only once you know what a bug is can you look for ways to squash it.

In this chapter, you will learn about

• How to track down CSS bugs

• The mysterious hasLayout property

• Hacks and filters

• The most common browser bugs and their fixes

• Graded browser support

CHAPTER 9

246

Bug hunting
We all know that browsers are buggy, some of them more than others. When a CSS developer
comes across a problem with code, there is the immediate temptation to mark it as a browser bug
and look for a hack or workaround. However, browser bugs aren’t as common as everybody likes
to think. The most common CSS problems arise not from the browser bugs but from an
incomplete understanding of the CSS specification. To avoid these problems, it is always best to
approach a CSS bug assuming that you have done something wrong. Only once you are sure
that there are no errors on your part should you consider the problem to be the result of a
browser bug.

Common CSS problems
Some of the simplest CSS problems are caused by typographical and syntactical errors in your
code. Things like forgetting to end your declarations with a semi-colon or typing font-face when
you meant font-family. A simple way to get round this problem is to choose a CSS editor like
SKEdit or CSS Edit that includes syntax highlighting and code completing. These features will
help prevent basic errors but are no substitute for proper validation. Running your code through a
service like the CSS Validator (http://jigsaw.w3.org/css-validator/) will highlight any
grammatical errors, showing you the lines the issues are on and a brief description of each error
(see Figure 9-1).

Figure 9-1. The Microsoft website as seen through the eyes of the CSS Validator

http://jigsaw.w3.org/css-validator

BUGS AND BUG FIXING

247

The Firefox Web Developer Toolbar extension (https://addons.mozilla.org/en-
US/firefox/addon/60) includes shortcuts to the online versions of both the HTML and CSS
validators. There is also the popular HTML Validator for Firefox (http://users.skynet.be/
mgueury/mozilla/)

When validating your HTML and CSS, you may be greeted with a page full of errors. This can be
quite intimidating at first, but don’t worry. Most of these errors will be the result of one or two
actual errors. If you fix the first error mentioned and revalidate, you will see many of the original
errors disappear. Do this a couple of times, and your code should quickly become error free.

Remember that the validator is only an automated tool and is not infallible. There are a growing
number of reported bugs with the validator, so if you think something is right but the validator is
saying something different, always check against the latest CSS specification. For instance, at
the time of this writing, the CSS validator was still throwing up errors for vendor-specific
extensions like —moz-border-radius, even though these are allowed in the CSS specification. If in
doubt, validate your code using the CSS 3 profile and then check the specification if you’re
unsure of anything.

Problems with specificity and sort order
As well as syntactic errors, one of the more common problems revolves around specificity and
sort order. Specificity problems usually manifest themselves when you apply a rule to an element,
only to find it not having any effect. You can apply other rules and they work fine, but certain rules
just don’t seem to work. In these situations, the problem is usually that you have already defined
rules for this element elsewhere in your document using a more specific selector.

In the following example, CSS developers have set the background color of all the paragraphs in
the content area to be white. However, they want the introductory paragraph to be orange and so
have applied that rule directly to the paragraph:

.content p {

 background-color: white;

}

.intro {

 background-color: orange;

}

If you test this code in a browser, you will see that the introductory paragraph is still white. This is
because the selector targeting all the paragraphs in the content area is more specific than the
selector targeting the introductory paragraph. To achieve the desired result, you need to make
the selector targeting the introductory paragraph more specific. In this case, the best way to
achieve this is to add the class for the content element to the start of the intro paragraph selector:

https://addons.mozilla.org/en-US/firefox/addon/60
https://addons.mozilla.org/en-US/firefox/addon/60
http://users.skynet.be/mgueury/mozilla
http://users.skynet.be/mgueury/mozilla

CHAPTER 9

248

.content p {

 background-color: white;

}

.content .intro {

 background-color: orange;

}

Try not to add more-specific selectors without thinking, as you may cause specificity issues is
other parts of your code. Instead, it is often better to remove extraneous selectors, making them
as generic as possible, and only add more specific selectors when you need fine-grain control.

As mentioned in Chapter 1, the Firebug add-on for Firefox (https://addons.mozilla.org/en-
US/firefox/addon/1843) is an invaluable tool for debugging your CSS. One of its many useful
features is the ability to inspect an element to see which CSS styles are being overridden. It does
this by crossing out any styles that are being overridden elsewhere in the style sheet, as shown in
Figure 9-2.

Figure 9-2. Styles appear crossed out when they are overriden in other parts of the stylesheet

https://addons.mozilla.org/en-US/firefox/addon/1843
https://addons.mozilla.org/en-US/firefox/addon/1843

BUGS AND BUG FIXING

249

Problems with margin collapsing
Margin collapsing (see Chapter 3) is another CSS feature that, if misunderstood, can cause a lot
of gray hairs. Take the simple example of a paragraph nested inside a div element:

<div id="box">

 <p>This paragraph has a 20px margin.</p>

</div>

The box div is given a 10-pixel margin and the paragraph is given a 20-pixel margin:

#box {

 margin: 10px;

 background-color:#d5d5d5;

}

p {

 margin: 20px;

 background-color:#6699FF;

}

You would naturally expect the resulting style to look like Figure 9-3, with a 20-pixel margin
between the paragraph and the div, and a 10-pixel margin around the outside of the div.

Figure 9-3. This is how you would expect the preceding style to look

However, the resulting style actually looks like Figure 9-4.

Figure 9-4. This is how the style actually looks

Two things are going on here. First, the paragraph’s 20-pixel top and bottom margins collapse
with the 10-pixel margin on the div, forming a single 20-pixel vertical margin. Second, rather than
being enclosed by the div, the margins appear to protrude from the top and bottom of the div.
This happens because of the way elements with block-level children have their height calculated.

CHAPTER 9

250

If an element has no vertical border or padding, its height is calculated as the distance between
the top and bottom border edges of its contained children. Because of this, the top and bottom
margins of the contained children appear to protrude from the containing element. However, there
is a simple fix. By adding a vertical border or padding, the margins no longer collapse and the
height of the element is calculated as the distance between the top and bottom margin edges of
its contained children instead.

To get the preceding example looking like Figure 9-3, you simply need to add padding or a border
around the div:

#box {

 margin: 10px;

 padding: 1px;

 background-color:#d5d5d5;

}

p {

 margin: 20px;

 background-color:#6699FF;

}

Most problems with margin collapsing can be fixed by adding a small amount of padding or a thin
border with the same color as the background of the element in question.

A great tool for visualizing how elements interact with each other is the topographic view in the
Web Developer Toolbar. Enabling this option gives each element a colored background based on
its position in the document. This makes it easy to see how elements are positioned relative to
each other in the document (see Figure 9-5).

BUGS AND BUG FIXING

251

Figure 9-5. A topographic view of the Mozilla Add-ons site

Another useful tool is the layout view in Firebug (see Figure 9-6), which shows you the various
dimensions of the element being inspected.

CHAPTER 9

252

Figure 9-6. The layout view of the header from the Mozilla Add-ons site

Bug hunting basics
The first step in tracking down a bug is to validate your HTML and CSS to check for typographical
or syntactic errors. Some display errors are caused by browsers rendering pages in quirks mode.
As such, it is a good idea to check that you are using the correct DOCTYPE for your markup
language in order for your pages to render in standards mode (see Chapter 1). You can tell the
mode your page is rendering in by checking it in the Firefox developer’s toolbar. If your page is
rendering in quirks mode, the checkmark at the top right of the toolbar will be gray. If your page is
rendering in standards mode, the checkmark will turn green. Clicking this checkmark will provide
more information about the page, as well as explicitly define the rendering mode (see Figure 9-7).

BUGS AND BUG FIXING

253

Figure 9-7. The Firefox web developer’s toolbar shows if your page is displaying in standards or
quirks mode

Many Windows developers used to develop their pages primarily using Internet Explorer, so each
time they made a change, they previewed the page in IE to see if it was working correctly. Once
the pages were almost ready, they would test in a variety of browsers and try to fix any
inconsistencies that appeared. However, this is a very dangerous approach that can cause many
long-term problems.

IE 6 is a notoriously buggy browser with several important CSS flaws. By using IE as their
primary development browser, some developers mistakenly interpret IE’s behavior as the correct
behavior and wonder why more modern browsers “break” their carefully crafted CSS layouts. In
reality, the pages are actually “broken” in IE and are displaying as written in the more standards-
compliant browsers.

A much safer approach is to use a more standards-compliant browser, such as Firefox or Safari,
as your primary development browser. If your layout works in one of these browsers, it will most
likely work correctly in all standards-compliant browsers and is a sign that you’re doing things
correctly. You can then test your pages on less-capable browsers and devise workarounds for
any display problems you find. Just remember not to leave browser testing until the end of the

CHAPTER 9

254

project. Instead, you should adopt a continual testing methodology, checking your pages in all the
major browsers as you go along. That way, you won’t get any nasty surprises at the end of the
project when you thought you were almost finished.

Try to avoid bugs in the first place
This advice may sound obvious, but one of the best ways of becoming bug free is to actually
avoid problems in the first place. A lot of rendering bugs are caused by overly complicated HTML
or CSS. As such, it makes sense to use the simplest code possible to achieve the desired
outcome. So avoid overly clever techniques in favor of tried and tested methods, and keep the
number of hacks you use to an absolute minimum.

Because there are so many different ways of achieving the same effect, consider using a different
method before spending hours debugging or hacking a particular technique. Only when you’re
sure there’s not a simple way to route around the problem should you try tackling it head on.

Isolate the problem
Once you’re sure you have a bug, you need to try to isolate the problem. By isolating the problem
and identifying the symptoms, you can hopefully figure out what is causing the problem and fix it.
One way to do this is by applying borders or outlines to the relevant elements to see how they
interact:

.promo1 {

 float: left;

 margin-lrft: 5px;

 border: 1px solid red;

}

.promo2 {

 float: left;

 border: 1px solid green;

}

I tend to add borders directly to my code, although you could use the outline option in the web
developer’s toolbar, or one of many bookmarklets for outlining different elements. Sometimes just
the act of adding borders will fix the problem, usually indicating a margin collapsing issue.

Try changing a few properties to see if they affect the bug, and if so, in what way. It may be useful
to attempt to exaggerate a bug. For instance, if the gap between these two boxes is bigger than
you expected in IE, try upping the margin to see what happens. If the space between the boxes in
IE has doubled, you have probably fallen foul of IE’s double-margin float bug.

BUGS AND BUG FIXING

255

.promo1 {

 float: left;

 margin-left: 40px;

 border: 1px solid red;

}

.promo2 {

 float: left;

 border: 1px solid green;

}

Try some common fixes. For instance, many IE bugs are fixed by setting the position property to
relative, by setting the display property to inline (on floated elements), or by setting a
dimension such as width. You will learn more about these common fixes and why they work later
in this chapter.

Many CSS problems can be found and fixed quickly, with a minimum of effort. If the problem
starts to drag on, you should consider creating a minimal test case.

Creating minimal test cases
A minimal test case is simply the smallest amount of HTML and CSS required to replicate the
bug. By creating a minimal test case, you help cut out some of the variables and make the
problem as simple as possible.

To create a minimal test case, you should first duplicate the problem files. Start by removing
extraneous HTML until you are left with just the basics. Then start commenting out style sheets to
work out which style sheets are causing the problem. Go into those style sheets and start deleting
or commenting out blocks of code. If the bug suddenly stops, you know that the last block of code
you commented out is contributing to the problem. Keep going until you are left only with the code
that is causing the problems.

From here, you can start investigating the bug in more detail. Delete or comment out declarations
and see what happens. How does that change the bug? Change property values and see if the
problem goes away. Add common fixes to see if they have any effect. Edit the HTML to see if that
has any effect. Use different combinations of HTML elements. Some browsers have strange
whitespace bugs, so try removing whitespace from your HTML. The list of potential areas for
exploration are almost endless.

CHAPTER 9

256

Fixing the problem, not the symptoms
Once you know the root of the problem, you are in a much better position to implement the
correct solution. Because there are many ways to skin a CSS site, the easiest solution is simply
to avoid the problem in the first place. If margins are causing you problems, think about using
padding instead. If one combination of HTML elements is causing problems, try changing the
combination.

Many CSS bugs have very descriptive names. This makes searching for answers on the Web
fairly easy. So if you have noticed that IE is doubling the margins on all floated elements, search
for “Internet Explorer Double Margin Float Bug” and you are bound to find a solution.

If you find that you cannot avoid the bug, you may have to simply treat the symptoms. This
usually involves filtering the rule off into a separate style sheet and applying a fix just for that
browser.

Asking for help
If you have created a minimal test case, tried common solutions, searched for possible fixes, and
still cannot find a solution, ask for help. You’ll find lots of active CSS communities out there,
such as CSS-Discuss (www.css-discuss.org/), the Web Standards Group
(http://webstandardsgroup.org/), and Stackoverflow (http://stackoverflow.com). These
communities are full of people who have been developing CSS sites for many years, so there is a
good chance somebody will have experienced your bug before and know how to fix it. If you have
a new or particularly intriguing bug, people may be willing to pitch in with suggestions and even
help you work out a fix.

The thing to remember when asking for help is that most web developers are extremely busy
people. If you haven’t validated your code or have simply posted a link to your full site expecting
them to trawl through hundreds of lines of HTML/CSS, don’t expect a flood of help. The best way
to ask for help on a mailing list or forum is to use a title that accurately describes the problem,
write a succinct summary of the problem, and then either paste in your minimal test case or, if it is
more than a few lines of code, link to the test case on your site. Annotated screenshots are also
useful, as it’s not always obvious from a written description what the problem is, especially if it
only affects specific browser versions.

Having layout
We all know that browsers can be buggy, and Internet Explorer 6 seems buggier than most. One
of the reasons IE behaves differently from other browsers is because the rendering engine uses
an internal concept called layout. Because layout is a concept particular to the internal working of
the rendering engine, it is not something you would normally need to know about. However,
layout problems are the root of many IE rendering bugs, so it is useful to understand the concept
and how it affects your CSS.

http://www.css-discuss.org
http://webstandardsgroup.org
http://stackoverflow.com

BUGS AND BUG FIXING

257

What is layout?
Internet Explorer on Windows uses the layout concept to control the size and positioning of
elements. Elements that are said to “have layout” are responsible for sizing and positioning
themselves and their children. If an element “does not have layout,” its size and position are
controlled by the nearest ancestor with layout.

The layout concept is a hack used by Internet Explorer’s rendering engine to reduce its
processing overhead. Ideally, all elements would be in control of their own size and positioning.
However, this causes huge performance problems in IE. As such, the Internet Explorer team
decided that by applying layout only to those elements that actually needed it, they could reduce
the performance overhead substantially.

Elements that have layout by default include

• body

• html (in standards mode)

• table

• tr and td

• img

• hr

• input, select, textarea, and button

• iframe, embed, object, and applet

• marquee

The concept of layout is specific to Internet Explorer on Windows, and is not a CSS property.
Layout cannot be explicitly set in the CSS, although setting certain CSS properties will give an
element layout. It is possible to see if an element has layout by using the JavaScript function,
hasLayout. This will return true if the element has layout and false if it doesn’t. hasLayout is a
read-only property and so cannot be set using JavaScript.

Setting the following CSS properties will automatically give that element layout:

• float: left or right

• display: inline-block

• width: any value

• height: any value

• zoom: any value (Microsoft property—doesn’t validate)

• writing-mode: tb-rl (Microsoft property—doesn’t validate)

CHAPTER 9

258

As of IE 7, the following properties also became layout triggers:

• overflow: hidden, scroll, or auto

• min-width: any value

• max-width: any value except none

What effect does layout have?
Layout is the cause of many Internet Explorer rendering bugs. For instance, if you have a
paragraph of text next to a floated element, the text is supposed to flow around the element.
However, in IE 6 and below, if the paragraph has layout—because you’ve set the height, for
example—it is constrained to a rectangular shape, stopping the text from flowing around the float
(see Figure 9-8).

Figure 9-8. Text is supposed to flow around adjacent floated elements. However, in IE on
Windows, if the text element has layout, this doesn’t happen

The difference in rendering between browsers can cause all kinds of problems with floated
layouts. Worse still, many people who use IE as their main browser mistakenly assume this is the
correct behavior and get confused when other browsers treat floats differently. Furthermore,
giving something layout appears to clear any floats contained therein, much like setting
overflow:hidden.

Another problem revolves around how elements with layout size themselves. If the content of an
element becomes larger than the element itself, the content is supposed to flow out of the
element. However, in IE 6 and below, elements with layout incorrectly grow to fit the size of their
contents (see Figure 9-9).

BUGS AND BUG FIXING

259

Figure 9-9. Elements with layout incorrectly grow to fit their contents

This rendering error means that width in IE on Windows actually acts more like min-width. This
behavior is also the cause of many broken floated layouts in IE. When the content of a floated
box incorrectly forces the width of the box to grow, the box becomes too big for the available
space and drops below the other floated elements.

Other problems related to layout include

• Elements with layout not shrinking to fit

• Floats being auto-cleared by layout elements

• Relatively positioned elements not gaining layout

• Margins not collapsing between elements with layout

• The hit area of block-level links without layout only covering the text

• Background images on list items intermittently appearing and disappearing on scroll

You will notice that many of the IE fixes covered later in this chapter involve setting properties
that force the element to have layout. In fact, if you come across an IE bug, one of the first things
you can do is try applying rules that force layout to see if that fixes the problem.

If you would like to learn more about IE’s internal hasLayout property, I recommend reading “On
Having Layout” at http://www.satzansatz.de/cssd/onhavinglayout.html.

Thankfully, the IE team fixed most of the layout related problems in IE 7. However, the team did
this by spotting common rendering bugs and creating exceptions in the code to handle them,
rather than fixing the underlying causes. As such, there may still be a few obscure layout bugs
kicking around that have not yet been discovered. IE 8 uses a completely new rendering engine
that purportedly ditches the use of the hasLayout property and therefore fixes the cause of these
problems.

http://www.satzansatz.de/cssd/onhavinglayout.html

CHAPTER 9

260

Workarounds
In an ideal world, properly coded CSS would work in every browser with CSS support.
Unfortunately, like all complicated pieces of software, browsers come with their own set of bugs
and inconsistencies. In the early days, support for CSS was pretty poor, so developers had to get
creative. By using parsing bugs and unimplemented CSS, developers were able to work their way
around problems by selectively applying different rules to different browsers. As such, hacks and
filters became a powerful weapon in a CSS developer’s arsenal.

Thankfully, modern browsers have much better support than their predecessors, so we don’t
need to worry about hacks any more. However until older browsers disappear for good, you may
find yourself maintaining legacy code. Therefore, it’s a good idea to familiarize yourself with some
of the more popular hacks and filters, if only so you can banish them from your code. Before we
do this though, let’s take a quick look at conditional comments.

Internet Explorer conditional comments
Conditional comments are a proprietary, and thus nonstandard, Microsoft extension of regular
HTML comments. As the name suggests, conditional comments allow you to show blocks of code
depending on a condition, such as a browser version. Despite being nonstandard, conditional
comments appear to all other browsers as regular comments, so they are essentially harmless.
Because of this, conditional comments are generally regarded as the best way to deal with IE-
specific bugs. Conditional comments first appeared in IE 5 on Windows and are supported by all
subsequent versions of the Windows browser.

To deliver a specific style sheet to all versions of IE 5 and above, you could place the following
code in the head of your HTML document:

<!-- [if IE]

 <link rel="stylesheet" type="text/css" href="/css/ie.css" />

-->

Versions of IE 5 and above on Windows would receive the stylesheet ie.css, while all other
browsers would simply see some commented-out text. This is interesting but not particularly
useful, as it’s rare to find a bug that all versions of Internet Explorer exhibit. Instead, you will
probably want to target a specific version or range of versions.

With conditional comments you could target a particular browser such as IE 6.0 using the
following code:

<!-- [if IE 6]

 <link rel="stylesheet" type="text/css" href="/css/ie6.css" />

-->

BUGS AND BUG FIXING

261

You could also target sets of browsers such as IE 5 and IE 5.5:

<!-- [if lt IE 6]

 <link rel="stylesheet" type="text/css" href="/css/ie5x.css" />

-->

As well as using conditional comments to present style sheets to Internet Explorer, you can also
use them to hide specific style sheets. Called downlevel-revealed conditional comments, the
following syntax will hide more advanced styles from all versions of IE:

<!--[if !IE]>-->

 <link rel="stylesheet" type="text/css" href="/css/advanced.css" />

<!--<![endif]-->

And this code effectively hides your styles from Internet Explorer 5.x:

<!--[if gte IE 6]><!-->

 <link rel="stylesheet" type="text/css" href="/css/modern.css" />

<!--<![endif]-->

Conditional comments work extremely well and are relatively simple to remember. The main
downside is that these comments need to live in your HTML, not your CSS. If a new version of
Internet Explorer comes out you may be forced to update the conditional comments on each page
of your site. However as long as you remember to do this, you should be fairly safe.

A warning about hacks and filters
As a language, CSS was designed to be very forward compatible. If a browser doesn’t
understand a particular selector, it will ignore the whole rule. Likewise, if it doesn’t understand a
particular property or value, it will ignore the whole declaration. This feature means that the
addition of new selectors, properties, and values should have no adverse effect on older
browsers.

You can use this feature to supply rules and declarations to more advanced browsers, safe in the
knowledge that older browsers will degrade gracefully. When a new version of the browser is
launched, if it now supports the CSS you were using as a filter, it should work as expected. If you
are using the more-advanced CSS to circumvent a problem in the older browsers, hopefully this
problem will have been solved in the newer version. Because of this behavior, the use of
unsupported CSS as a filtering mechanism is a relatively safe option. I say relatively because
there is always a chance that the browser will support your new CSS but still exhibit the bug you
were trying to fix.

Using filters that rely on parsing bugs is a slightly more dangerous route, because you are relying
on a bug, not a feature. Similar to the previous method, if the parsing bug gets fixed but the bug
you are trying to fix hasn’t been addressed, you could end up with problems. However, more of a
concern is that parsing bugs could find their way into newer versions of browsers. Say, for
instance, a new version of Firefox has a particular parsing bug. If that bug is being used as a filter

CHAPTER 9

262

to supply IE with different width values to account for its proprietary box model, all of a sudden
Firefox would inherit that width, potentially breaking a lot of sites. It is also worth bearing in mind
that these kinds of hacks and filters will often invalidate your code. So as a general rule, it is
probably safer to use filters that rely on unsupported CSS, rather than ones that use some kind of
browser bug. Or better yet, avoid them all together.

Using hacks and filters sensibly
There is a rather unfortunate overreliance on hacks and filters, especially among those new to
CSS. When something does not work in a particular browser, some CSS developers will
immediately employ a hack, seeing it as some kind of magic bullet. In fact, a few developers
seem to measure their expertise by the number of obscure hacks and filters they know.

If you have done your homework and realize that the only option is to employ some form of hack
or filter, you need to do so in a sensible and controlled manner. If your CSS files are small and
simple, and you need to employ only a couple of hacks, it is probably safe to place these hacks in
your main CSS files with comments indicating that is the case. However, hacks are usually fairly
complicated and can make your code more difficult to read. If your CSS files are long and
complicated, or you need to use more than a couple of hacks, you may be best separating them
into their own style sheets. As well as making your code easier to read, separating out hacks
means that if a hack starts causing problems in a future browser, you will know exactly where it
is. Similarly, if you decide to drop support for a particular browser, removing the associated hacks
is as simple as removing the CSS file.

Applying the IE for Mac band pass filter
Tantek Çelik created a series of filters (http://tantek.com/CSS/Examples/) based on browser
parsing errors that allow you to supply stylesheets to selected browsers using the @import rule
The filters used to be the recommended way of filtering out various versions of Internet Explorer
until conditional comments became commonplace. However, you may still find these filters handy
if, for instance, you need to explicitly target is IE 5.2 on the Mac. You can do this using Tantek’s
IE 5 for Mac band pass filter, which exploits an escaping bug within CSS comments:

/**//*/

 @import "ie5mac.css";

/**/

IE 5 for Mac incorrectly escapes the second asterisk, causing the @import rule to be applied. As
such, IE 5 for Mac sees something like this:

/* blah */

 @import "ie5mac.css";

/**/

http://tantek.com/CSS/Examples

BUGS AND BUG FIXING

263

All other browsers correctly ignore the escaping element, as it is enclosed within a comment, and
the @import rule is commented out. Essentially, all other browsers see a rule that looks like this:

/* blah *//*

 blah

*/

As with the other band pass filters, it is not necessary to understand how this filter works in order
to use it. The beauty of these filters is they specifically target bugs in older, out-of-date browsers.
Therefore, you should be able to use these filters safe in the knowledge that they shouldn’t cause
problems in newer browsers.

Applying the star HTML hack
One of the best-known and possibly most useful inline CSS filters is known as the star HTML
hack. This filter is incredibly easy to remember and targets IE 6 and below. As you are aware, the
HTML element is supposed to be the first, or root, element on a web page. However older
versions of IE have an anonymous root element wrapping around the HTML element. By using
the universal selector, you can target an HTML element enclosed inside another element.
Because this only happens in IE 6 and below, you can apply specific rules to these browsers:

* html {

 width: 1px;

}

As this bug was fixed in IE 7, it is a relatively safe way of targeting older versions of IE.

This hack forms part of the modified simplified box model hack (MSBMH), which used to be a
popular way of managing Internet Explorer’s propriety box model in older browsers.

#content {

 width: 80px;

 padding: 10px;

}

* html #content {

 width: 100px;

 w\idth: 80px;

}

While I wouldn’t recommend using this technique now, it is useful to know what it looks like as
you may come across it in legacy code.

CHAPTER 9

264

Applying the child selector hack
Instead of explicitly targeting older versions of Internet Explorer, say that you wanted to create a
rule that these browsers will ignore. You can do this by using the child selector hack, though this
technique isn’t really a hack, as it simply uses a selector that older versions of IE don’t
understand but more modern browsers do.

In this example, the child selector hack is being used to hide a transparent background PNG
image from IE 5-6 on Windows:

html>body {

 background-image: url(bg.png);

}

This rule will be hidden from older versions of Internet Explorer. However, IE 7 supports both the
child selector and native PNG transparency, so it will interpret the code correctly.

Common bugs and their fixes
One of the greatest skills any CSS developer can have is the ability to spot common browsers
bugs. By knowing the various elements that conspire to cause these bugs, you can spot and fix
them before they ever become a problem.

Double-margin float bug
One of the most common and easy-to-spot bugs is the double-margin float bug in IE 6 and below.
As the name suggests, this Windows bug doubles the margins on any floated elements (see
Figure 9-10).

Figure 9-10. Demonstration of IE on Windows’s double-margin float bug

BUGS AND BUG FIXING

265

This bug is easily fixed by setting the display property of the element to inline. As the element
is floated, setting the display property to inline won’t actually affect the display characteristics.
However, it does seem to stop IE 6 and below on Windows from doubling all of the margins. This
is such a simple bug to spot and fix: every time you float an element with horizontal margins, you
should automatically set the display property to inline, just in case margin gets added in the
future.

Three-pixel text jog bug
Another bug very common in IE 5 and 6 on Windows is the three-pixel text jog bug. This bug
manifests itself when you have text adjacent to a floated element. For instance, say you had an
element floated left, and you don’t want the text in the adjacent paragraph to wrap around the
float. You would do this by applying a left margin to the paragraph, the same width as the image:

.myFloat {

 float: left;

 width: 200px;

}

p {

 margin-left: 200px;

}

When you do this, a mysterious 3-pixel gap appears between the text and the floated element. As
soon as the floated element stops, the 3-pixel gap disappears (see Figure 9-11).

Figure 9-11. Demonstration of the IE 5 and 6 three-pixel text jog bug

CHAPTER 9

266

Fixing this bug requires a two-pronged attack. First, the element containing the text is given an
arbitrary height. This forces the element to have layout, which seemingly removes the text jog.
Because IE 6 and below on Windows treat height like min-height, setting a tiny height has no
effect on the actual dimensions of the element in that browser. However, it will affect other
browsers, so you need to hide this rule from everything other than IE 6 and below on Windows.
The best way to do this is to move these styles into a separate CSS file using conditional
comments.

p {

 height: 1%;

}

Unfortunately, this technique causes another problem. As you learned earlier, elements with
layout are constrained to a rectangular shape and appear next to floated elements rather than
underneath them. The addition of 200 pixels of padding actually creates a 200-pixel gap between
the floated element and the paragraph in IE 5 and 6 on Windows. To avoid this gap, you need to
reset the margin on IE 5-6/Win back to zero:

p {

 height: 1%;

 margin-left: 0;

}

The text jog is fixed, but another 3-pixel gap has now appeared, this time on the floated image.
To remove this gap, you need to set a negative 3-pixel right margin on the float:

p {

 height: 1%;

 margin-left: 0;

}

.myFloat {

 margin-right: -3px;

}

This will fix the problem if the floated element is anything other than an image. However, if the
floated element is an image, there is one last problem to solve. IE 5.x on Windows adds a 3-pixel
gap to both the left and the right of the image, whereas IE 6 leaves the image’s margins
untouched. As such, if you need to support IE 5.x, you will want to have one style sheet for those
browsers:

BUGS AND BUG FIXING

267

p {

 height: 1%;

 margin-left: 0;

}

img.myFloat {

 margin: 0 -3px;

}

and another for IE 6:

p {

 height: 1%;

 margin-left: 0;

}

img.myFloat {

 margin: 0;

}

IE 6 duplicate character bug
Another curious bug involving floats is IE 6’s duplicate character bug. Under certain conditions,
the last few characters in the last of a series of floats will be duplicated beneath the float, as
shown in Figure 9-12.

Figure 9-12. Demonstration of IE 6’s duplicate character bug

CHAPTER 9

268

This bug manifests itself when you have multiple comments in between the first and last of a
series of floated elements. The first two comments have no effect, but each subsequent comment
causes two characters to be duplicated. So three comments would result in two duplicate
characters; four comments would result in four duplicate characters; and five comments would
result in six duplicate characters.

<div id="content">

 <!-- mainContent -->

<div id="mainContent">

...

</div><!-- end mainContent -->

 <!-- secondaryContent -->

<div id="secondaryContent">

...

</div>

Strangely, this bug seems related to the three-pixel text jog bug you saw previously. To fix the
bug, you can remove 3 pixels from the final float by setting a negative right margin or make the
container 3 pixels wider. However, both these methods are likely to cause problems in IE 7, which
isn’t expected to exhibit this bug. Because of this, the easiest and safest way to avoid this bug is
to remove the comments from your HTML code.

IE 6 peek-a-boo bug
Another strange and infuriating bug is IE 6’s peek-a-boo bug, so called because under certain
conditions text will seem to disappear, only to reappear when the page is reloaded. This happens
when there is a floated element followed by some nonfloated elements and then a clearing
element, all contained within a parent element that has a background color or image set. If the
clearing element touches the floated element, the nonfloated elements in between seem to
disappear behind the parent element’s background color or image, only to reappear when the
page is refreshed (see Figure 9-13).

BUGS AND BUG FIXING

269

Figure 9-13. Demonstration of IE 6’s peek-a-boo bug

Luckily, there are a number of ways you can combat this bug. The easiest way is probably to
remove the background color or image on the parent element. However, this is often not practical.
Another way is to stop the clearing element from touching the floated element. The bug doesn’t
seem to manifest itself if the container element has specific dimensions applied. The bug also
doesn’t manifest itself if the container is given a line height. Last, setting the position property of
the float and the container to relative also seems to alleviate the problem.

Absolute positioning in a relative container
The last major browser bug I am going to cover involves absolutely positioned elements within a
relatively positioned container. You learned in earlier chapters how useful nesting an absolutely
positioned element in a relative container can be. However, IE 6 and below have a number of
bugs when you use this technique.

These bugs arise from the fact that relatively positioned elements don’t gain IE on Windows’s
internal hasLayout property. As such, they don’t create a new positioning context, and all of the
positioned elements get positioned relative to the viewport instead (see Figure 9-14).

CHAPTER 9

270

Figure 9-14. Demonstration showing how IE 5.x incorrectly positions absolutely positioned
elements within a relative container

To get IE 6 and below on Windows to behave correctly, you need to force the relatively positioned
container to have layout. One way to do this is to explicitly set a width and height on the
container. However, you will often want to use this technique when you don’t know the width and
height of the container, or when you want one or both of these properties to be flexible.

Instead, you can use conditional comments to filter out IE 5 and 6 and then give the container
layout by applying an arbitrary dimension. Because elements in IE 6 and below incorrectly
expand to fit their contents, the actual height won’t be affected.

 .container {

 height: 1%;

}

Stop picking on Internet Explorer
Internet Explorer isn’t the only buggy browser around, so you may wonder why I have been
focusing my attentions on IE bugs. Don’t worry; it’s not another case of Microsoft bashing; there
are good reasons for this focus.

First, IE still has a significant market share so bugs tend to get found and documented pretty
quickly. However, the pace of development is much slower in IE than other browsers. So, while
Firefox and Safari are releasing new builds every few months, it can take years to see a new
version of IE. As such, IE bugs tend to stick around longer.

The speed at which bugs are found and fixed in Firefox and Safari is excellent, but it does have
its own problems. Rather than having two or three versions of a browser to deal with, you may
have 10 or 20. You can never be sure if your users have the latest version, and this makes

BUGS AND BUG FIXING

271

testing extremely difficult. IE, on the other hand, didn’t see a major revision for about five years.
As such, there has been much more time for bugs to surface and much more impetus to find a fix.

Luckily, IE 8 is a much more standards-compliant browser than previous versions. Many of the
better-known IE bugs have been addressed, along with increased support for advanced CSS 2.1.
As with all browsers, new bugs will surface, and IE 8 is far from perfect. However, the faster
people can be convinced to upgrade to modern browsers such as IE 8 and Firefox, the quicker
older browsers such as IE 6 can be retired.

Graded browser support
No discussion about bugs would be complete without mentioning browser support. Each time a
new version of Internet Explorer comes out, the release sparks a big discussion about when it is
going to be safe to stop supporting the previous versions. After all, if Microsoft no longer officially
supports IE6, why should we bother? Unfortunately, there is no clear solution to the problem of
browser support, and the honest answer is that it depends on the individual site.

If you are hosting a site for web developers, you probably have a large Firefox and Mac user-
base, in which case IE 6 usage may be so low as to deem it not worth worrying about. However,
even a couple of percent on a site that receives a million visitors a month could equate to tens of
thousands of unhappy customers. For business or consumer sites, the number of IE 6 users is
likely to be much higher. You may even find that on specific sites IE 6 usage outstrips that of IE 7.
This is because many corporate IT departments lock their users into specific browser versions,
while many home users only update their browsers when they get a new machine. So instead of
talking about dropping support for a certain browser, we need to grade on the curve and decide
what support actually means on a site-by-site basis. This is where the idea of graded browser
support comes in.

Large organizations like Yahoo and the BBC realize that not all browsers are created equal and
that ensuring your site looks and behaves exactly the same in all browsers will increase
maintenance costs while hampering innovation. In order to avoid having to design for the lowest
common denominator in browser terms, these companies have started to adopt graded support
charts (see Figures 9-15 and 9-16). Rather than seeing browser support as a binary
supported/unsupported option, these charts offer a variety of different support levels, from
rendering the full design for modern browsers, down to just the content for older versions. While
each organization frames the problem differently, the steps are pretty much the same.

First, you need to identify the browsers for which you want to ensure render consistently across
your site and then test on all of these browsers. This group will usually contain the latest and
most popular browsers used by your audience. So the latest versions of Firefox, Safari, and
Opera, as well as IE 7 and 8 will probably fall into this category. With these browsers, you want
the sites to look largely the same, although for practical reasons a couple of pixels here or there
won’t make much difference.

CHAPTER 9

272

Figure 9-15. Yahoo’s graded browser support chart for A-grade browsers

Figure 9-16. Graded browser support table at the BBC

Next, you identify a set of aging but still important browsers. This could include older versions of
Firefox and Safari along with IE 6. You’ll test on a random sampling of these browsers and
attempt to fix any problems you find. However, you’ll accept that rendering may not be perfect
and may differ from browser to browser, just as long as the content is accessible.

Last, you’ll identify a set of obscure or out-of-date browsers that you don’t officially support. This
would be browsers like IE 4, Netscape Navigator 4, or Opera 7. With these browsers, you still
want to make the content and functionality available, but you’re not worried about the

BUGS AND BUG FIXING

273

presentation. As such, you are happy to accept fairly major design variations. Even better would
be to remove the styling from these browsers altogether.

A graded support philosophy gives you a much more flexible way of dealing with the volume of
browsers and other user agents out there. The charts from the BBC are a good starting point, but
as every site is unique, I strongly recommend that you create your own on a project-by-project
basis.

Summary
In this chapter, you have learned some important techniques for tracking down and squashing
CSS bugs. You have learned about IE on Windows internal hasLayout property and how this is
the root of many IE on Windows browser bugs. You also learned about some of the most
common browser bugs and how to fix them. Finally, you’ve learnt how to deal with a plethora of
different browsers through the use of graded support charts.

Next, you will see how all of this information can be put together, through two stunning case
studies created by two of the best CSS designers and developers of our time.

CHAPTER 1

4

275

Chapter 10

Case Study: Roma Italia

Annotated and worn, my first-edition copy of this book still sits proudly on my bookshelf. I’ve
referenced it often during the three years since its publication. Much has changed in our industry
during this period, most notably the release of Internet Explorer 7 (and later, 8) yielding a bevy of
new CSS 2 and CSS 3 features now supported among the major browsers. We’ll cover several of
these in this case study.

Yet, much has remained the same. Markup is still markup. Standards are still standards. And the
need for talented individuals such as yourself who know how to produce beautiful, usable
experiences with HTML, CSS, and JavaScript remains not only imperative but even more
important, if anything.

Chances are you, the reader, are more knowledgeable and experienced since publication of the
first edition. As such, I hope the case study I’ve crafted will challenge you even more than the
previous one. In this case study you will learn about

• The 1080 layout and grid
• Advanced CSS2 and CSS3 features
• Font linking and better web typography
• Adding interactivity with Ajax and jQuery

View the case study online here: roma.cssmastery.com. The source files are also available from
www.friendsofed.com.

http://www.friendsofed.com

CHAPTER 10

276

About this case study
Roma Italia is a fictitious website created expressly for this case study (Figure 10-1 shows the
home page). The CSS techniques employed in this case study, however, are anything but
artificial. Each technique was carefully selected with the intent of providing you with a solid
selection of advanced CSS techniques, many of which are applicable in real-world environments.
Other experimental techniques with less consistent support among current browsers are meant to
demonstrate what’s coming in the near future.

This case study site, which purports to be a guide to Rome, Italy, consists of two pages: the home
page and the video page. Some of the links on the home page link out to real resources, and the
rest are dead links only for demonstration purposes. All photography, video, and content for
Roma Italia are material from a trip my wife and I recently took to Rome, Italy. For all intents and
purposes, this fictitious site could very well be a real site if all of the links actually went
somewhere.

Special thanks to Aaron Barker (aaronbarker.net) who assisted with several of the jQuery and
AJAX examples in this case study, and my wife Suzanne for some of the photos featured on the
site.

CASE STUDY: ROMA ITALIA

277

Figure 10-1. Roma Italia home page

CHAPTER 10

278

The foundation
When drafting markup, the factors I consider most important are that it be as meaningful and as
lightweight as possible. By meaningful, I mean the HTML elements and selector names we
choose appropriately represent the content in such a way that if we were to experience the web
with all styling removed, the hierarchy and structure of the content would still make sense. Long
gone are the days of spacer GIFs and repeated br elements. These have been replaced with
elements that logically, or semantically, represent the content:

• An ordered list of top-selling items (ol)
• The principal heading on a page (h1)
• A quotation from a happy customer (blockquote and cite)

This approach requires that we remove presentational information from our thinking, a concept
described comprehensively by Andy Clarke in his remarkable book, Transcending CSS (New
Riders, 2006). I still vividly recall my early experiences with CSS as we coded a rather large-scale
web application, thinking we were cleverly creating a series of presentational class names that
allowed us to mark up content with elegant clarity such as this:

<p class="arial red 10">

only to endure a painful day of reckoning when the application required a redesign, and dozens of
templates were to become anything but red Arial 10-pixel type.

By lightweight, I mean marking up our content with the fewest parts possible for all things
markup—elements, attributes, and values for HTML; selectors, properties, and values for CSS.
For example,

background-color: #c27e28;

background-image: url(../img/feature-orange.jpg);

background-repeat: no-repeat;

is minimized as

background: #c27e28 url(../img/feature-orange.jpg) no-repeat;

You’ll see numerous examples of meaningful and lightweight markup throughout this case study,
some of which I’ll describe here and the large majority of which you’ll be able to discover on your
own.

CASE STUDY: ROMA ITALIA

279

An eye toward HTML 5
On the topic of meaningful and lightweight markup, I’ve chosen to go with HTML 4.01 Strict as the
DOCTYPE, favoring it above XHTML 1.0 Strict and HTML 5. I’ll briefly explain my reasoning.

XHTML 1.0 Strict: This is what many of us in the industry, including myself, have been using for
the past few years. However, Dave Shea offers a compelling argument to drop XHTML with an
eye towards HTML 5:

“Six years ago, many of us thought XHTML would be the future of the Web, and we’d be living
in an XML world by now. But in the intervening time, it’s become fairly apparent to myself and
others that XHTML2 really isn’t going anywhere, at least not in the realm that we care about. .
.I’m not ready to start working through the contortions needed to make my sites work with an
HTML5 DOCTYPE yet, which leaves me with the most recent implemented version of the
language. . .[U]ntil I get a better sense that HTML5 has arrived, 4.01 will do me just fine for the
next four or five years” (“Switched,” http://mezzoblue.com/archives/2009/04/20/switched/).

HTML 5: In a nutshell, HTML 5 is the next major version of the hypertext markup language. The
good news is meaningless div and span elements will be replaced by more meaningful elements
such as nav, header, and video.

This means instead of marking up something such as

<div class="header">

 <h1>Page Title</h1>

</div>

or

<object><param/><embed src="http://vimeo.com/3956190"></embed></object>

we’ll be able to mark up the same HTML like this:

<header>

 <h1>Page Title</h1>

</header>

and this:

<video src="http://vimeo.com/3956190">

http://mezzoblue.com/archives/2009/04/20/switched
http://vimeo.com/3956190
http://vimeo.com/3956190

CHAPTER 10

280

The bad news is as of the publication of this case study, HTML 5 is not supported adequately by
major browsers (notably Internet Explorer). Estimates range from months to years before HTML 5
is fully supported and therefore a viable option for all of us creating websites.

An alternate approach is to maintain that same watchful eye towards HTML 5 by writing markup
using current DOCTYPEs but with semantic, HTML 5-like class names. Jon Tan covers this
approach beautifully in “Preparing for HTML 5 with Semantic Class Names”
(http://jontangerine.com/log/2008/03/preparing-for-html5-with-semantic-class-names).

For example, using the nav element, HTML 5 markup would be

<nav>

 Menu item 1

 ...

</nav>

while our semantic, HTML 5–like markup using HTML 4 or XHTML 1 would be

<div class="nav">

 Menu item 1

 ...

</div>

However, the drawback to this approach is you potentially end up with a lot of extra divs. If our
goal is meaningful and lightweight markup, the most optimal markup right now would instead be
the following:

<ul class="nav">

 Menu item 1

 ...

http://jontangerine.com/log/2008/03/preparing-for-html5-with-semantic-class-names

CASE STUDY: ROMA ITALIA

281

So, my opinion about HTML 5? We’ll all adapt just fine when it’s ready for prime-time and fully
supported. The mental shift will be minimal. Until then, I’ll keep coding the way we’ve always
done it.

For additional resources on the topic of HTML 5, visit the following:

• 12 Resources for Getting a Jump on HTML 5:
http://cameronmoll.com/archives/2009/01/12_resources_for_html5/

• Coding a HTML 5 Layout from Scratch:
http://smashingmagazine.com/2009/08/04/designing-a-html-5-layout-from-scratch/

• Wikipedia article on HTML 5: http://en.wikipedia.org/wiki/HTML_5
• The Rise of HTML 5: http://adactio.com/journal/1540
• Google Bets Big on HTML 5:

http://radar.oreilly.com/2009/05/google-bets-big-on-html-5.html

reset.css
When I first began coding CSS-styled sites several years ago, it was common to declare a few
“global” styles at the top of the master style sheet: body, a img, h1, h2, h3, and so on. What was
done back then as a means of overriding the default styles of any given browser eventually
evolved into today’s practice of using a “reset” style sheet, typically named reset.css.

As stated by the team at Yahoo, a reset style sheet “removes and neutralizes the inconsistent
default styling of HTML elements, creating a level playing field across A-grade browsers. . .”
(http://developer.yahoo.com/yui/reset/). I personally prefer Eric Meyer’s Reset CSS,
which is used in this case study. You can download this style sheet here:
http://meyerweb.com/eric/tools/css/reset/.

I use a single style sheet, master.css, to import any number of style sheets for a site. I declare
the reset style sheet first, thereby allowing any style sheets that come after to override the reset
styles as needed:

@import url("reset.css");

@import url("screen.css");

@import ...

All styles for screen display are listed in screen.css. In the case study site, three additional style
sheets are used:

• autocomplete.css contains styling for the live search feature.
• datepicker.css contains styling for the calendar date picker.
• ie.css, which is referenced using conditional comments (see next section), contains

styling specific to Internet Explorer.

http://cameronmoll.com/archives/2009/01/12_resources_for_html5
http://smashingmagazine.com/2009/08/04/designing-a-html-5-layout-from-scratch
http://en.wikipedia.org/wiki/HTML_5
http://adactio.com/journal/1540
http://radar.oreilly.com/2009/05/google-bets-big-on-html-5.html
http://developer.yahoo.com/yui/reset
http://meyerweb.com/eric/tools/css/reset

CHAPTER 10

282

We could have easily inserted the styles from autocomplete.css and datepicker.css into
screen.css, but for the purposes of walking you through this case study, they remain separate.

The 1080 layout and grid
In 2006, I posted a quandary about the optimal width for monitors with a resolution of 1024 × 768
or greater (see http://www.cameronmoll.com/archives/001220.html). It was around this time that
many of us who had been developing websites optimized for 800 × 600 for quite some time were
beginning to explore widths optimized for a 1024-pixel resolution.

In the same article, I proposed 960 pixels as the ideal width for moving beyond 800 × 600. It
accounted for browser chrome as well as for the fact that many users don’t browse full-screen.
More importantly, 960 is a rather magical number: it’s divisible by 2, 3, 4, 5, 6, 8, 10, 12, 15, and
16. Imagine the grid possibilities (we’ll get to grids in a minute).

Following publication of the article, 960 nearly became the de facto standard for fixed-width
designs on the web. A number of Photoshop, browser, and operating system plug-ins default to it.
There’s even an entire CSS framework built on a 960 grid, aptly named 960.gs (http://960.gs/).
More than three years later, a new question arises: is it time to move beyond 960? I’m uncertain
of the answer, but this case study provides the perfect opportunity to explore one.

Before the flak begins flying from fixed-width naysayers, allow me to inform you that I’m a huge
fan of fluid designs with min-width and max-width limits, as evidenced by my Extensible CSS
series
(http://cameronmoll.com/archives/2008/02/the_highly_extensible_css_interface_the_series/)
and case study design for the first edition of this book (http://tuscany.cssmastery.com/). In fact,
there are some fascinating things we can do with fluid layouts using resources
such as Cameron Adams’ excellent resolution dependent layout method
(http://themaninblue.com/writing/perspective/2006/01/19/) and Ethan Marcotte’s fluid
images technique (http://unstoppablerobotninja.com/entry/fluid-images/). But I believe
there will always be a need for fixed width, and frankly in many ways, it’s more practical than fluid
width.

So, assuming we agree it’s time to at least engage in a discussion about moving beyond 960,
what is the ideal width? Here are a few options:

• 1020 is divisible by 2, 3, 4, 5, 6, 10, 12, 15 but not 8 and 16. It’s not much wider than
960.

• 1040 is divisible by 2, 4, 5, 8, 10, 16 but not 3, 12, or 15. Yet it has a reasonable width
that sits somewhere between the lower end of 960 and higher end of users browsing full
screen (many don’t, as I already mentioned).

• 1080 is divisible 2, 3, 4, 5, 6, 8, 10, 12, 15 but oddly enough, not 16. It pushes the upper
end of the width spectrum, and measure (line length) could become an issue if not dealt
with appropriately.

It’s worth noting that integer divisions are not the only possibility for grid divisions, or even the
most optimal in some cases. Ratio divisions such as the golden ratio

http://www.cameronmoll.com/archives/001220.html
http://960.gs
http://cameronmoll.com/archives/2008/02/the_highly_extensible_css_interface_the_series
http://tuscany.cssmastery.com
http://themaninblue.com/writing/perspective/2006/01/19
http://unstoppablerobotninja.com/entry/fluid-images

CASE STUDY: ROMA ITALIA

283

(http://en.wikipedia.org/wiki/Golden_ratio) can also be considered. But as Jason Santa
Maria points out, ratio divisions may not be practical on the web as they rely on the horizontal and
vertical divisions being viewable concurrently, the latter of which often is not (see
http://jasonsantamaria.com/articles/whats-golden/).

Conclusively, if we move beyond 960, I’m not certain we’ll settle on a clear winner this time
around as we did before. None of the widths listed here seem as extensible as 960, at least
mathematically. But for this case study, I’ve chosen 1080. It provides ample options for grids, and
it’s sufficiently beyond 960 to make the exploration worthwhile.

Using grids in web design
Grids have been in use in graphic design for several decades, but only in the last few years have
they really found favor in the minds and voices of web designers—and with good reason at last.
Wikipedia offers a succinct description of the grid and its merits, “A typographic grid is a two-
dimensional structure made up of a series of intersecting vertical and horizontal axes
used to structure content. The grid serves as an armature on which a designer can
organize text and images in a rational, easy to absorb manner”
(http://en.wikipedia.org/wiki/Grid_(page_layout)).

Grids are comprised of things such as columns, rows, margins, gutters (the space between
columns and rows), flow lines (horizontal divisions), and other components. In a medium such as
print design, the width and height for each of these components are bound to the finished size of
the material; their dimensions are easily calculated by the designer. In web design, however,
width dimensions are often much more calculable than height dimensions. This is because of the
potentially endless height of a scrollable page.

Accordingly, the armature for the Roma Italia focuses on vertical divisions. Figure 10-2 shows the
grid for the site.

Figure 10-2. The 12-division grid used to design the site

http://en.wikipedia.org/wiki/Golden_ratio
http://jasonsantamaria.com/articles/whats-golden
http://en.wikipedia.org/wiki/Grid_

CHAPTER 10

284

You can toggle this grid on and off by uncommenting the following markup:

<div id="grid"></div>

This is even easier to do if you have a browser plug-in such as Firebug for Firefox
(http://getfirebug.com/) that allows you to temporarily alter a document’s markup within the
browser. With Firebug open, double-click the body tag to reveal the comment and then edit the
HTML right there in Firebug.

Figure 10-3. Each column is 80 pixels wide with a 10-inch gutter to the right

As you can see, the grid is divided into 12 columns. Each column is 80 pixels wide with a 10-pixel
gutter to the right of each column (as shown in Figure 10-3), which produces a layout 1080-pixel
wide. An offset of 10 pixels—essentially an extra gutter—is added to the left margin to balance
the grid. However, this offset as well as the gutter alongside the last column to the right are
invisible to the viewer. You could argue the grid is actually 1070 pixels wide with these invisible
components removed, or conversely, 1090 pixels with the same components made visible.
Regardless, our grid is based on an overall measure of 1080.

For the most part, text and images align with columns and gutters. Of course, that’s the point of
using a grid. Yet you’ll notice I haven’t aligned every element perfectly. What’s important to note
here is that a grid doesn’t necessarily dictate the exact placement of items. Rather, it facilitates
the general positioning of elements, leaving precise positioning to the good judgment of the
designer. In Making and Breaking the Grid (Rockport Publishers, 2005), Timothy Samara
describes this concept perhaps better than I:

It’s important to understand that the grid, although a precise guide, should never subordinate
the elements within it. Its job is to provide overall unity without snuffing out the vitality of the
composition. In most circumstances, the variety of solutions for laying out a page within a
given grid are inexhaustible, but even then it’s wise to violate the grid on occasion. A designer
shouldn’t be afraid of his or her grid, but push against it to test its limits. A really well-planned
grid creates endless opportunities for exploration.

But the real power of a grid is found not just in a single page but in the composition as a whole.
For example, in a printed brochure, a grid serves to unify the placement of elements throughout
the brochure. Similarly, if Roma Italia were a real site, all of its pages—not just the two you see
here—would leverage the same grid, yielding visual continuity for the user and limitless layout
options for the designer.

I’ve offered only a cursory discussion of grids in this section. You can find many more resources
at The Grid System (http://www.thegridsystem.org/) and in Smashing magazine’s “Designing

http://getfirebug.com
http://www.thegridsystem.org

CASE STUDY: ROMA ITALIA

285

with Grid-Based Approach” (http://www.smashingmagazine.com/2007/04/14/designing-with-
grid-based-approach/).

Advanced CSS 2 and CSS 3 features
It wasn’t until Internet Explorer 7 was released in October 2006 that instructions like that of this
section became both rational and technically feasible. At last IE7 yielded access to many of the
exciting features found in the CSS2 and CSS3 specs that had already been supported by Firefox,
Safari, and other browsers. Among the most notable were min-width and max-width, attribute
selector, adjacent sibling selector, child selector, and alpha-transparency in PNG images.

These well-supported features combined with other features not yet well-supported allows us to
do some rather fascinating stuff. An extreme example of this is John Allsopp’s
recreation of Apple’s navigation bar using only CSS, no images (see
http://westciv.com/style_master/blog/apples-navigation-bar-using-only-css). Less
extreme examples—though I hope still fascinating—are found in this section.

The following advanced CSS2 and CSS3 features are used in Roma Italia:

• Adjacent selector
• Attribute selector
• box-shadow

• opacity

• RGBa

• content

• Multicolumn
• text-overflow

• Multiple backgrounds
• @font-face

• min-/max-width, min-/max-height
• Alpha transparency in PNG images

Of this list, we’ll cover the following features throughout this case study: attribute selector, box-
shadow, RGBa text-overflow, multicolumn, multiple backgrounds, and @font-face. For those
features that are not covered, I’ve tried to add comments in the markup to assist you in learning
on your own time. You may also find it helpful to have this CSS cheat sheet handy in soft copy or
printed format: http://cameronmoll.com/articles/widget/cheatsheet.pdf.

Dowebsitesneedtolookexactlythesameineverybrowser.com?
Type this heading into your browser’s address bar and you’ll discover the answer. This simple
site, developed by Dan Cederholm, circled the web in 2008 as virtual propaganda discrediting the
myth that websites must look exactly the same in any and all browsers. It was a wake-up call to
the web development community to become a little more progressive in its approach to markup,
rather than being enslaved by absolute uniformity. In a single word, Dan’s site denounced the
labeling of visual inconsistency as the red-headed stepchild.

http://www.smashingmagazine.com/2007/04/14/designing-with-grid-based-approach
http://www.smashingmagazine.com/2007/04/14/designing-with-grid-based-approach
http://www.smashingmagazine.com/2007/04/14/designing-with-grid-based-approach
http://westciv.com/style_master/blog/apples-navigation-bar-using-only-css
http://cameronmoll.com/articles/widget/cheatsheet.pdf

CHAPTER 10

286

In Roma Italia, the most obvious visual inconsistency deals with the multiple background feature.
This feature will allow for several background images per a single element, whereas currently
only one image per element is allowed. Rounded corner aficionados rejoice.

As of this writing, Safari is the only major browser to support multiple backgrounds. (Interestingly
enough, Safari has supported the feature since version 1.3, dating all the way back to 2005!) This
means that in browsers such as Firefox and Internet Explorer, the site will look slightly different.
Not only is this intentional for the purpose of this case study, but it’s also to demonstrate that it’s
perfectly legitimate to deliver a slightly different experience to different browsers with no negative
effect on the overall user experience.

Multiple backgrounds, which are sure to be a boon to web professionals once fully supported, are
easy to style. Simply separate each image and its values with a comma:

background: url(image1.png) no-repeat top left,

 url(image2.png) no-repeat top right,

 url(image3.png) no-repeat bottom left;

Alternatively, properties and values can be defined separately:

background-color: #000;

background-image: url(image1.png), url(image2.png), url(image3.png);

background-repeat: no-repeat;

background-position: top left, top right, bottom left;

Multiple backgrounds are used in our case study site in a couple places, as shown in Figure 10-4.
Notice the differences between Safari and Firefox and Internet Explorer.

CASE STUDY: ROMA ITALIA

287

Figure 10-4. Differences in the background images between Safari (left) and Firefox and Internet
Explorer (right)

Two background images are used in the body to give the site its background texture: the large
dark brown image and light brown stripe with a subtle gradient, respectively named bg-dark.jpg
and bg-light.jpg. The CSS looks like this:

body {

 background: url(../img/bg-dark.jpg) repeat-x top center,

 url(../img/bg-light.jpg) repeat-x 239px left;

 background-color: #f1efe8;

 }

Because Firefox and Internet Explorer don’t yet support multiple backgrounds, and if we leave the
CSS as shown, neither image will show up. This will leave the background completely empty,
which isn’t desirable. So, as a means of at least displaying the dark image, we insert the following
duplicate property above the first:

 background: #f1efe8 url(../img/bg-dark.jpg) repeat-x;

Firefox reads this property and ignores the other. We repeat the same property in ie.css as
Internet Explorer isn’t fond of this little hack we’ve thrown together. The final CSS found in
screen.css is as follows:

body {

 background: #f1efe8 url(../img/bg-dark.jpg) repeat-x;

 background: url(../img/bg-dark.jpg) repeat-x top center,

 url(../img/bg-light.jpg) repeat-x 239px left;

 background-color: #f1efe8;

 }

Let’s be clear: This isn’t the most efficient way to accomplish what we’ve shown here. First, we
could have used a single image that combined the dark and light designs, eliminating the need for
multiple background images. Second, we’re adding duplicate markup to force Firefox and Internet
Explorer to display at least one image. However, the point of these inefficiencies is solely to
defend insignificant visual inconsistencies from browser to browser and to demonstrate what’s

CHAPTER 10

288

around the corner with multiple backgrounds. For the sake of the collective industry, let’s keep
our hopes up that the corner is closer than expected.

Attribute selector
The attribute selector eliminates the need to add a class or ID to an element by referencing any
attribute or attribute value contained in the element. It can be used on virtually any element with
inherent attributes. For example, img[alt] targets an attribute while img[src="small.gif"]
targets an attribute value. Further, similar attribute values can be targeted using syntax strings
such as img[src^="sm"] which will target any value beginning with the prefix “sm” (e.g., “small”).
See “CSS3: Attribute selectors” (http://www.css3.info/preview/attribute-selectors/) for
additional examples.

Attribute selectors come in handy in a variety of situations, but probably the most useful is with
forms. If elements are styled with a generic hook of input { }, all input elements within the form
will be styled. This means that if you’re hoping to target text fields only or the submit button only,
you’re relegated to adding superfluous classes and IDs to do so. The attribute selector, therefore,
is a clean way to target specific elements.

Figure 10-5. This search field uses two input elements, each targeted by an attribute selector

The search field near the top of the site serves as our attribute selector example (see Figure 10-
5). The HTML is as follows:

<form action="#" method="get" accept-charset="utf-8">

 <fieldset>

 <legend></legend>

 <label for="search-input">Search</label>

 <input type="text" id="search input" name="search" value="" title="Search">

 <input type="image" name="" src="img/search-go.gif">

 </fieldset>

</form>

Here, we’d like to style the text field with several properties and float search-go.gif to the left. In
bold are the two input elements we’ll target with an attribute selector. Notice the absence of a
class or ID selector within each input element. This is because we can target each using the type
attribute, and we do so like this:

http://www.css3.info/preview/attribute-selectors

CASE STUDY: ROMA ITALIA

289

#header form input[type="text"] {

 display: block;

 ...

 background: url(../img/search-bg.gif) no-repeat;

 }

#header form input[type="image"] {

 float: left;

 }

Any input element containing the attribute type="image" will be floated left, while any input
element containing the attribute type="text" will be styled as we’ve indicated. Additionally, this
same syntax is used in jquery.plugins.js to add jQuery and AJAX functionality:

$('#header form input[type="text"]').searchField();

Both jQuery and AJAX will be treated in a later section.

Box-shadow, RGBa, and text-overflow
In the center of the Roma Italia site, toward the bottom of the page, you’ll see a Voices Around the
World featurette. If this featurette were real, Twitter updates (tweets) from any users who include
the hash tag #romaitalia in their tweet would appear randomly on the map based on the Twitter
user’s geographical location. Visitors to the site could click these randomized quotes and be
taken to page with the full tweet, the author’s user name, and tweets from other Roma Italia fans
as a means of learning about Rome real-time via Twitter updates. The tweets displayed in the
case study are fictitious, but you may follow @roma_italia, a real Twitter account I’ve set up for
this case study.

Figure 10-6. Map markers that fade in and out with additional text revealed on hover

CHAPTER 10

290

The markers that fade in and out every couple of seconds are rather complex codewise (see
Figure 10-6), and we’ll use the markup for these to demonstrate the CSS 3 features box-shadow,
RGBa, and text-overflow.

Each marker is composed of three parts: the tweet text, a white background with a drop shadow,
and a dot image for the map marker. The marker is wrapped in a list item (li), which is housed in
an unordered list (ul) containing the world map background image:

 <li class="l1" id="map2" style="top: 61px; left: 53px;">

 ”Absolutely divine. Don’t skip the Il Vittoriano. Its size alone is

 impressive. There’s a stunning view from the top.”

 ...

We style the ul with the following properties:

#voices ul {

 position: relative;

 width: 310px;

 height: 178px;

 background: url(../img/bg-map.gif) no-repeat;

 }

Notice we’ve set the position to relative. This allows us to absolutely position each list item
relative to the ul. Otherwise, the list item would position relative to another parent element, most
likely the body. (See chapter 3 for a refresher on absolute positioning.)

Each map marker li is styled accordingly:

#voices ul li.l1 {

 position: absolute;

 padding-top: 16px;

 background: url(../img/mapmarker-dot.png) no-repeat 2px top;

 }

CASE STUDY: ROMA ITALIA

291

The map marker dot is embedded as a background image, and the class l1 indicates location
number one (dot to the right), while l2 indicates location number two (dot to the left). Absent are
the location properties that position each marker on the map. This is because we dynamically
position each marker as it fades in using an inline style, which for this particular marker is
style="top: 61px; left: 53px;". That is, 61px from the top of the ul and 53px from the left of it.

The white background on which the tweet text rests is slightly transparent and has a drop-shadow
on the left, right, and bottom edges. These two styles are accomplished using RGBa and box-
shadow, respectively:

#voices ul li.l1 a {

 display: block;

 padding-left: 11px;

 font: 11px/14px Georgia, serif;

 color: #32312a;

 -webkit-box-shadow: 0 2px 3px rgba(0, 0, 0, 0.35);

 -moz-box-shadow: 0 2px 3px rgba(0, 0, 0, 0.35);

 background-color: rgba(255, 255, 255, 0.78);

 }

As box-shadow and RGBa are covered in Simon’s case study in Chapter 11, please refer to his text
for an explanation of these two features. Note, however, that RGBa opacity differs from another
CSS 3 feature called opacity. RGBa opacity can be applied to a specific property, such as
background, and it will only affect that property. opacity, on the other, affects everything in the
element it modifies, such as this:

#voices ul li.l1 a {

 opacity: 0.35

 ...

 }

The values for opacity are similar to RGBa: 0 (fully transparent) to 1 (full opaque). However, I
stress that this affects the entire element. Had we used it here, not only the white background
would be 35 percent opaque but the tweet text, too.

When the user mouses over a map marker, the display of the marker changes, as shown in
Figure 10-7.

CHAPTER 10

292

Figure 10-7. Full text is displayed on hover

This is where text-overflow comes into play. I wish I had a dollar for every time I could have
used this feature in my career—by now, I’d be penning these words from a beach house in the
Bahamas. The good news is that today it’s fairly well supported across the major browsers. In
fact, IE supports it better than Firefox, as does Safari. text-overflow clips a block of text that is
too large to fit within its containing element. Using the value ellipsis appends an ellipsis (. . .) to
the clipped text.

For each map marker, text-overflow is used to clip the text to one line:

#voices ul li.l1 a em {

 white-space: nowrap;

 width: 135px;

 overflow: hidden;

 text-overflow: ellipsis;

 -o-text-overflow: ellipsis;

 -moz-text-overflow: ellipsis;

 -webkit-text-overflow: ellipsis;

 }

Because this feature isn’t officially supported by each browser—even though all of the major
browsers do support it—we’ve added the prefixes -o- (Opera), -moz- (Mozilla), and -webkit-
(Webkit). Then, for the mouseover effect, we add the :hover pseudo-class to the element,
change the height to 72px, and set overflow to visible.

#voices ul li.l1 a em:hover {

 white-space: normal;

overflow: visible;

 text-overflow: inherit;

 -o-text-overflow: inherit;

CASE STUDY: ROMA ITALIA

293

 cursor: hand;

 cursor: pointer;

 background: #fff none;

height: 72px;

 padding-left: 11px;

 padding-bottom: 5px;

 margin-left: -9px;

 }

And that completes the effect—hat tip to CSS3.info for their text-overflow examples, which were
inspiration for the creation of this effect. Other CSS 3 features can also be found at their website:
http://www.css3.info/.

Font linking and better web typography
We could easily fill the pages of this book with techniques for typography on the web. In the
brevity afforded by this case study, we’ll cover only a few techniques here:

• Using px for font-size
• Hanging punctuation
• Multicolumn text layout
• Font linking and embedding

Setting font-size like it’s 1999
For a number of years, px was the de facto standard for sizing text with font-size. It gave
designers transferring their design from Photoshop (or other software) to HTML a consistent,
absolute unit for text size. Then, as we became more knowledgeable of and concerned with
accessibility, relative text size (em or %) gradually became the preferred unit. This enabled low-
vision users, and really anybody, to change their browser’s default text size permanently via the
browser’s settings or on-the-fly using the keyboard commands Ctrl+ and Ctrl– (Windows) or
Command + and Command –.

Accordingly, and up until recently, all major browsers would scale up or down the size of the text
while retaining the formatting and layout of the page. This is commonly called text scaling or text
zooming. This adaptation required us to create markup that allowed for relative sizing of any
elements containing text. For example, if a div contained text set atop a background image, we
would have to either repeat the image as the div grew larger with text scaling or create the image
larger than necessary to compensate for growth. This is something I covered in detail in
my “The Highly Extensible CSS Interface” series of articles (see
http://cameronmoll.com/archives/2008/02/the_highly_extensible_css_interface_the_series/).

http://www.css3.info
http://cameronmoll.com/archives/2008/02/the_highly_extensible_css_interface_the_series

CHAPTER 10

294

However, recent versions of every major browser—Safari, Firefox, Google Chrome, Opera, and
yes, Internet Explorer—now default to page zooming instead of text scaling for Ctrl +/– and
Command +/– commands. Page zooming literally zooms the entire page—layout, formatting, and
text size—in unison. Elements retain their size and shape, which greatly reduces the need to
compensate for text scaling. In effect, the browser assumes the burden of relative sizing.

What does all this mean? It means px can again be considered a viable value for font-size. It
also means the difference between setting text with absolute units or setting text with relative
units may be negligible for users. For you and me, however, the difference is significant. The
burden of calculating relative units throughout a CSS document is replaced by the convenience of
absolute units—14px is 14px anywhere in the document, independent of parent elements whose
font-size may differ.

Bear in mind this case study site is meant to be realistic but experimental, as well. I’m at liberty to
explore and ask the questions “what if?” and “why not?”. Your projects may not yield the same
opportunity, so make the right choice for your audience. As with nearly all of the decisions we
make as web professionals, you need to make the right decision based on your audience and
users. That is the one constant that will never change with all the changes that have occurred and
are bound to occur in our industry. In short, if relative sizing is the right choice for your project, no
one else can tell you otherwise—including me.

For additional reading on the debate over px for font-size, check out these articles:

• The Problem with Pixels:
http://www.wilsonminer.com/posts/2007/mar/16/problem-pixels/

• IE 7 Does not Resize Text Sized in Pixels:
http://www.456bereastreet.com/archive/200703/ie_7_does_not_resize_text_sized_i

n_pixels/
• Mezzoblue – Zoom: http://mezzoblue.com/archives/2008/10/07/zoom/
• Hello Old Friend: http://orderedlist.com/articles/hello-old-friend

Hanging punctuation
Hanging punctuation is one of those subtle signals that a skilled typographer is behind the design.
These feature is available in most of the Adobe family of design applications, but it’s not available
as a CSS property. Not yet, that is. There’s actually a property called hanging-punctuation
proposed in the CSS3 spec (see http://www.w3.org/TR/css3-text/#hanging-punctuation), but
to my knowledge no current browser supports this property.

Hanging punctuation aligns punctuation marks outside the text block as to not disrupt the visual
flow of the text. Figure 10-8 shows an example using quotation marks.

http://www.wilsonminer.com/posts/2007/mar/16/problem-pixels
http://www.456bereastreet.com/archive/200703/ie_7_does_not_resize_text_sized_i
http://mezzoblue.com/archives/2008/10/07/zoom
http://orderedlist.com/articles/hello-old-friend
http://www.w3.org/TR/css3-text/#hanging-punctuation

CASE STUDY: ROMA ITALIA

295

Figure 10-8. An example showing how hanging punctuation (bottom) differs from punctuation
aligned with the edge of the text (top). The latter is the default in most graphic design software, as
well as text within a browser

This technique is used in three places on the home page: the first line of text beneath the Roma
Moleskine heading (see Figure 10-9), the tweet text in the Voices Around the World map markers,
and the orange quotation by the Venerable Bede. The last of these is an image, so we’ll cover the
first one. The same technique is used for the second.

Figure 10-9. Hanging punctuation implemented in Roma Italia

The HTML is straightforward:

<div id="featurette1">

 ...

 <p>

 “The ultimate traveler’s journal.” City maps,

 removable sheets, and a 96-page tabbed archive.</p>

 ...

</div>

CHAPTER 10

296

The HTML entities “, ’, and ” are curly quotes. These are not necessary for
hanging punctuation, but they’re yet another subtle signal of good typography. These entities
make the source code appear a bit more cluttered to the untrained eye, but the adjusted
punctuation rendered by the browser—and noticeable by trained eyes—makes up for the
difference.

The CSS is where the magic happens:

#featurette1 p {

 text-indent: -.3em;

 }

And that’s it. In your projects, adjust this value depending on the size and family of your typeface.

Multicolumn text layout
With a layout as wide as this one, maintaining a measure (or line length) that is suitable for
readability becomes an issue. Measure is the width of a block of text, measured by the number of
characters (including spaces) per line. There are countless studies and opinions about the
optimal number of characters per line, ranging from 45 to 95 characters per line and varying
depending on the medium. This section isn’t a discussion about optimal measure, rather one
about how to maintain a reasonable measure.

Because this layout is a full 1080 pixels wide, it provides an excellent opportunity to try out the
multi-column text feature found in the CSS3 spec. This feature is currently supported by WebKit
and Mozilla browsers. Other browsers render the text as a single column as wide as the columns
combined.

Robert Bringhurst, in his exceptional and typographically replete The Elements of Typographic
Style (Hartley and Marks, 2004), suggests 40–50 characters per line for text set in multiple
columns. For the sake of convenience, I’ve followed his recommendation with this layout.

Shown in Figure 10-10 is a snippet from video.html.

CASE STUDY: ROMA ITALIA

297

Figure 10-10. Multicolumn text layout on the video page

Notice the text is set in two columns. First, the HTML is standard stuff:

<div id="main-video">

 <h3>

 Highlights from a recent vacation to Rome, Italy. Shot with a...</h3>

 <p>I’m no video virtuoso. I only dabble with video as time...</p>

 ...

</div>

The CSS, on the other hand, is anything but standard:

#main-video {

 float: left;

 margin: 40px 10px 70px;

 width: 520px;

 -moz-column-count: 2;

 -moz-column-gap: 20px;

 -webkit-column-count: 2;

CHAPTER 10

298

 -webkit-column-gap: 20px;

 }

Here again -moz- (Mozilla) and -webkit- (Webkit) are prefixed out of necessity. Notice there are
two properties at play: column-count and column-gap. These properties are fairly easy to
understand and to use—set a value for the number of columns you want, and select a value for
the gap between them. The entire block of text is then automatically set in the number of columns
specified. A third property, column-rule, allows you to add a border between the columns (e.g.,
column-rule: 1px solid #000;).

Questions about the practicality of multiple-column text on the web and issues with scrolling up
and down the page are warranted, but I’m confident that in the hands of a skilled typographer,
multicolumn layout has the potential to extend the typography options available to us on the web.

@font-face
The words of Jeffrey Veen, founder of Typekit (http://typekit.com/), are the perfect introduction
to this section:

The W3C recommendation for CSS web fonts [@font-face] will be 7 years old soon. Why, after
all these years, has typography for the web not progressed further? Why haven’t designers
embraced linked, downloadable fonts in their designs?
(http://blog.typekit.com/2009/06/02/fonts-javascript-and-how-designers-design/)

Excellent questions, Jeffrey. It’s highly likely that by the time this book has hit store shelves and
worked its way into your hands, Jeffrey’s Typekit product will probably have resolved, in a big
way, the very questions he’s asking. Typekit attempts to resolve the implementation and security
issues (discussed later in this section) with @font-face by hosting typefaces centrally that have
already been approved by type foundries for font linking (see Figure 10-11).

http://typekit.com
http://blog.typekit.com/2009/06/02/fonts-javascript-and-how-designers-design

CASE STUDY: ROMA ITALIA

299

Figure 10-11. Typekit offers web font linking without the hassle of @font-face implementation
and security issues

Simply put, @font-face provides us with the ability to use virtually any font in our designs
rendered as HTML text without worrying about whether or not that font is installed on the user’s
machine. This is commonly referred to as font linking or font embedding. Instead of this at the top
of our document

body {

 font-family: Georgia, serif;

 ...

 }

we can do this

@font-face {

 font-family: "Garamond Premier Pro";

 src: url(fonts/GaramondPremrPro.otf);

 }

Then, we reference the font-family as we’re already accustomed to doing:

CHAPTER 10

300

h1 {

 font-family: "Garamond Premier Pro", serif;

 }

I get giddy just typing all this (geekness, I know). But imagine using any typeface you owned in
your site’s design and having your text rendered as real, HTML text—no sIFR, no Cufón, no
images. You’re probably just as giddy now, too.

Of course, if things were that easy, we would have been began using @font-face seven years
ago. Indeed, there are caveats. First is—you guessed it—browser support. Safari 3 and newer
and Firefox 3.1 and newer support @font-face. So does Internet Explorer 4 and newer. However,
IE staunchly supports only the .eot (Embedded OpenType) format, which is essentially a
Microsoft proprietary font format. .eot files can be created only from .ttf (TrueType) files, and
other font formats such as .otf (OpenType) must be converted to .ttf to then be converted to
.eot. No wonder @font-face hasn’t taken off.

Second, type foundries and type vendors have been very apprehensive about font linking on the
web, and their concern is twofold: because font files are stored on the site and therefore publicly
accessible, they may be vulnerable to downloading and illegal use, and because many of their
end user license agreements (EULAs) have not been updated to allow for font linking.

However, the good news is also twofold: new technologies are emerging, such as Typekit, that
eliminate the two concerns just mentioned, and @font-face encourages the use of typefaces
other than the standard set we’re all used to (Arial, Georgia, etc.), which inevitably will increase
the demand for commercial typefaces. Therefore, type vendors and foundries have a vested
interest in seeing font linking and embedding flourish. In fact, during the course of writing this
chapter, several foundries have announced new typefaces available for font linking on the Web,
and even some have announced significant changes to their EULAs.

Museo Sans, see Figure 10-12, is a typeface by designer Jos Buivenga, released in 2008. In
particular, Museo Sans 500 is free, and it’s the weight I’ve used here. Best of all the EULA allows
for font linking. (Note that Gotham, the typeface used in the logo and in the titles overlaying the
fading feature images, would have been my first choice for font linking. Alas, their EULA didn’t
allow for it when this site was coded.)

CASE STUDY: ROMA ITALIA

301

Figure 10-12. Museo typeface samples. Image courtesy of MyFonts.com

In Roma Italia, @font-face is used to demonstrate what is possible now and in the near future. In
screen.css, you’ll see the following code near the top of the document:

@font-face {

 font-family: "Museo Sans X";

 src: url(../fonts/MuseoSans_500.otf);

 }

Museo Sans is used in several headings and in the top navigation (see Figure 10-13):

#home h3, #home h4, #home #header h2, #home #header ul a {

 font-family: "Museo Sans X", "Lucida Grande", "Lucida Sans Unicode",

 Arial, sans-serif;

 }

Figure 10-13. Museo Sans is the typeface used in the top navigation

Notice that I’ve still indicated backup font choices in the event that the user’s browser doesn’t
support @font-face. Also notice that the name of the typeface is Museo Sans X. When you
establish @font-face in your CSS, you can name the font-family whatever you want. I could
have used Musei Vaticani for all it matters as long as I reference the proper font file
(MuseoSans_500.otf). Because Museo Sans is free, you may already have it installed on your
machine. I specifically added the X to be sure you’re seeing @font-face at work with my copy of
Museo Sans and not a local copy on your machine.

Note that I’ve not converted the Museo Sans .otf file to .eot and therefore Internet Explorer will
not recognize it. If you’re seeing Museo Sans in Internet Explorer, you’re seeing Cufón at work,
not @font-face (see the next section).

For additional reading, see the following:

• Download a copy of Museo Sans at http://myfonts.com/fonts/exljbris/museo-sans/
• For an extensive review of @font-face and EOT, see Jon Tan’s “@font-face in IE:

Making Web Fonts Work”: http://jontangerine.com/log/2008/10/font-face-in-ie-
making-web-fonts-work

http://myfonts.com/fonts/exljbris/museo-sans
http://jontangerine.com/log/2008/10/font-face-in-ie-making-web-fonts-work
http://jontangerine.com/log/2008/10/font-face-in-ie-making-web-fonts-work
http://jontangerine.com/log/2008/10/font-face-in-ie-making-web-fonts-work

CHAPTER 10

302

Cufón, an interim step toward @font-face
I’ve posted an extensive tutorial about Cufón on my personal website, which you can find at this
address: http://cameronmoll.com/archives/2009/03/cufon_font_embedding/. Because of this,
I’ll offer only a cursory examination of Cufón in this case study. In short, Cufón allows you to
render HTML text in the typeface of your choice without requiring any images or the use of @font-
face (see Figure 10-14).

First things first. sIFR, as many of you may be aware, is a means of replacing “short passages of
plain browser text with text rendered in your typeface of choice, regardless of whether or not your
users have that font installed on their systems” using a combination of Flash and JavaScript (see
http://www.mikeindustries.com/blog/sifr/). Shaun Inman, Mark Wubben, Mike Davidson, and
several others put in many long hours developing and refining IFR and sIFR, and we all owe them
our gratitude for moving forward in a big way the state of typography on the web. What @font-
face lacked in browser support and type foundry endorsement over the years, sIFR made up for
in the same period.

For many of us, however, the Flash part of these technologies often makes it difficult to set up
and use. Cufón, on the other hand, can be set up and run on your site in about 5 minutes.
Because of this, I personally see Cufón as an good interim step between sIFR and @font-face
should you not have the option of font linking available to you.

Figure 10-14. Cufón’s typeface script generator

http://cameronmoll.com/archives/2009/03/cufon_font_embedding
http://www.mikeindustries.com/blog/sifr

CASE STUDY: ROMA ITALIA

303

Here’s how Cufón works:

1. Download the Cufón script file at http://wiki.github.com/sorccu/cufon.
2. Upload the typeface of your choice using the Cufón generator, which will provide you

with a second script file.
3. In the head of your document, add references to the Cufón script and the typeface script

provided by the generator, such as:

<script src="js/cufon-yui.js" type="text/javascript" charset="utf-8"></script>

<script src="js/Museo_400.font.js" type="text/javascript" charset="utf-
8"></script>

Also add this just before the closing body tag to avoid a flicker issue in IE:

<script type="text/javascript">Cufon.now();</script>

Also in the head, indicate which HTML elements or selectors should be replaced with
your typeface, such as:

<script type="text/javascript">

 Cufon.replace('h1');

</script>

 or

<script type="text/javascript">

 Cufon.replace('h1')('h2')('blockquote');

</script>

4. Alternately, if you’re using a JavaScript framework such as jQuery on the site where
Cufón will be used (Roma Italia includes jQuery), Cufón will take advantage of that
framework’s selector engine such that you can call out specific selectors like this:

<script type="text/javascript" charset="utf-8">

 Cufon.replace('#header h2,#header ul a');

</script>

http://wiki.github.com/sorccu/cufon

CHAPTER 10

304

5. In your CSS file(s), modify any text replaced by Cufón the same way you would any
other text—color: #333;, font-size: 12px;, text-transform: uppercase;, and so
forth.

And that’s it. Cufón is currently supported by IE 6, 7, and 8, Firefox 1.5 and above, Safari 3 and
above, Opera 9.5 and above, and Google Chrome. In the case study site, I’ve included Cufón in
addition to @font-face, so you can explore the two options. Be aware Cufón shares the same
caveat as @font-face when it comes to licensing—the EULA for the typeface you choose must
allow for font embedding on the web.

Note that I’ve wrapped Cufon.replace in a conditional comment because IE won’t read the .otf
font file we’re using for @font-face. Therefore, Cufón becomes a replacement for @font-face in
IE for the purposes of this case study. If you’d like to see Cufón work in any browser other than
IE, simply remove the conditional comment, and it will override @font-face.

Adding interactivity with AJAX and jQuery
When I first spoke about AJAX in a workshop a few years ago, few raised their hands when
asked if they had experience developing sites and applications that employed AJAX. If asked that
same question today, it’s likely many of you reading this would raise your hands. These questions
would probably have similar results if asked about jQuery instead of AJAX.

Indeed, AJAX and jQuery have weaved their way into high-profile sites and weekend projects
alike as the de facto twosome for producing rich interactivity on the Web. Of course, the two can
be utilized independent of and separate from each other, but it’s common to find them used in
tandem. Emerging technologies such as Adobe Flex and Microsoft Silverlight challenge the pair’s
standing as king of the hill, but I suspect we will see AJAX and jQuery remain major players on
the Web for at least a few more years.

This section is not meant to be an exhaustive lecture on these two technologies—there are plenty
of great books, tutorials, and blog articles already available for that. Instead I offer a brief
introduction (or refresher) to AJAX and jQuery and how they are each used in Roma Italia. If
you’re already familiar with these technologies, skip ahead to “Using AJAX and jQuery for the
search feature.”

AJAX
AJAX, shorthand for Asynchronous JavaScript and XML, typically includes at least three
components:

• Asynchronous server communication, which is most commonly accomplished via
XMLHttpRequest

• Manipulation of the Document Object Model (DOM) for dynamic display and interaction
• JavaScript to bind everything together

Asynchronicity is the key component of AJAX—or any rich Internet technology, for that matter—
as it provides that native-application feel within the web environment. Instead of the traditional

CASE STUDY: ROMA ITALIA

305

request and response model that fetches an entire page with a full trip to the server,
asynchronicity means data is fetched only for a select portion of the page (e.g., user name
availability when registering an account).

In Roma Italia, we fake asynchronous server communication for the purposes of demonstration
by using a little JavaScript and by fetching data from a few static PHP pages:

• imageLoad.php for the large feature images that fade in and out
• search.php for the search field auto-complete feature

Faking asynchronicity merely allows you to download the code samples and open the interface
on any machine running PHP, without requiring true server communication.

We’ll take a look at the code for auto-complete feature right after the jQuery segment.

jQuery
Karl Swedberg and Jonathan Chaffer’s very useful Learning jQuery (Packt Publishing, 2007)
describes jQuery as a “general-purpose abstraction layer for common web scripting.” I like to
think of it as “JavaScript for scripting noobs like me.”

jQuery enables you to do the following:

• Traverse the DOM
• Modify the appearance of a page
• Dynamically alter the content of a page

And it allows you to do all this without writing lines and lines of JavaScript. Even better, it
leverages CSS syntax for using the selectors in your document as the hooks for creating
interaction.

Let’s pick apart a sample from another site I’ve coded to understand the components of jQuery.
This is another fictitious site creating for instructional purposes and it can be found at
http://cameronmoll.com/articles/widget/.

http://cameronmoll.com/articles/widget

CHAPTER 10

306

Figure 10-15. The Widget demonstration site created for my “The Highly Extensible CSS
Interface” series

We’ll use the Dismiss button located in the yellow notification bar at the top of the page (see
Figure 10-15). When clicked, the yellow bar slowly slides upward until it is no longer visible.

Here’s the code we add to the button’s anchor tag:

$('#alert').slideUp('slow');

Following is a description of each component:

• $(): This basic jQuery construct (or function) is used to select parts of the document. In
this example, we’re selecting an element with the ID of alert.

• .slideUp: This is one of the many jQuery methods. Methods are essentially a shortcut
for lots of JavaScript. It’s quite obvious the method slideUp makes the element we’re
targeting (#alert) slide up.

• ('slow'): This predefined string establishes how the method functions. In this case, it
tells the element to slide up slowly.

This code can be added either inline or in a separate .js file (or dynamically), the latter being the
more optimal method. But here’s the real kicker: I didn’t have to come up with any of this code on
my own. The construct, method, and string came prebuilt with jQuery. I just had to know I wanted
the element to slide up slowly, and then I looked up the appropriate references in the jQuery
library that corresponded with the animation and movement I was seeking. Boom. Done.

CASE STUDY: ROMA ITALIA

307

Using AJAX and jQuery for the search feature
Now that we’ve taken care of the instructional housekeeping, let’s take a look at an example of
AJAX and jQuery working together in Roma Italia. The feature we’ll explore is the search feature.
Earlier in this case study, we looked at how the attribute selector is used to target specific
elements enclosed within the form for the search field. Now, we’ll take a look at the other
components at play.

The search feature is actually one of the most complex features codewise in the entire site. As a
user types a keyword query, the magnifying glass icon is replaced with a loading icon and
matching results are displayed. This is sometimes referred to as live search. Both AJAX and
jQuery are hard at work bringing this interaction to life. Despite the complexity, piecing the
components together is easier than it seems.

First, here’s a review of the markup:

<form action="#" method="get" accept-charset="utf-8">

 <fieldset>

 <legend></legend>

 <label for="search-input">Search</label>

 <input type="text" id="search-input" name="search" value="" title="Search">

 <input type="image" name="" src="img/search-go.gif">

 </fieldset>

</form>

To swap in the loading icon, the most lightweight approach I could devise—and one I haven’t
really seen other sites do yet either—was to combine the background image for the input field
and the loading icon into a single animated GIF (see Figure 10-16). CSS is used to position the
image based on the state of the interaction, shifting the image up and down as the user types to
toggle between the magnifying glass icon and the loading icon.

Figure 10-16. search-bg.gif, a single animated GIF that includes two states

Here’s the CSS for the input field:

#header form input[type="text"] {

CHAPTER 10

308

 ...

 padding: 6px 0 0 28px;

 height: 20px;

 background: url(../img/search-bg.gif) no-repeat;

 }

By default, the background image is positioned at the top left, and we restrict the height to 20
pixels. Add 6 pixels of top padding, and this means only 26 pixels of the image are shown—
exactly half the height of the image. Only the magnifying glass portion is revealed.

When the user begins typing, several things happen. First, each time the user types a character,
four files are engaged: autocomplete.css, jquery.plugins.js, jquery.autocomplete.js, and
search.php. As typing begins, class="ac_input" is dynamically added to the input field and then
removed when the live search displays results. This selector is found in autocomplete.css and is
styled as follows:

.ac_loading {

 background: url(../img/search-bg.gif) no-repeat 0 -26px !important;

 }

Notice the background image is now positioned -26px from the top, shifting the image upward
and revealing the lower half (loading icon). This indicates to the user that data is being retrieved
asynchronously from the server (search.php).

Second, while the loading icon is spinning, data is exchanged with search.php to locate results
matching the characters the user is typing. Open search.php and you’ll see some of the terms
I’ve populated the file with—Ancient Ostia, Ancient Rome, Arch of Constantine, and so on.

Third, matching results are delivered back to the page, and a select-like menu is shown beneath
the input field with matching results (see Figure 10-17). This menu, which is really just an
unordered list (ul), is generated by a combination of jquery.autocomplete.js and
jquery.plugins.js and styled by autocomplete.css. The user can then select a match with
mouse or keyboard, or continue typing and press the Enter key. This completes the interaction.

Figure 10-17. The completed search feature in use

CASE STUDY: ROMA ITALIA

309

Now, jquery.autocomplete.js includes several hundred lines of code, but that’s another beautiful
thing about jQuery—I didn’t write any of this. It’s a jQuery plug-in written by the community, and
many such plug-ins are available. In fact, most of the jQuery in the case study comes from plug-
ins. The auto-complete one is jQuery Autocomplete and can be found at
http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete/.

For additional resources and tutorials, check out the following:

• Bulletproof Ajax by Jeremy Keith: http://bulletproofajax.com/
• Ajaxian.com: http://ajaxian.com/
• DHTML Site: Ajax Tutorials and Scripts: http://dhtmlsite.com/ajax.php
• Official jQuery site: http://jquery.com/
• Digital Web magazine’s jQuery crash course:

http://www.digital-web.com/articles/jquery_crash_course/
• Simon Willison’s jQuery for JavaScript programmers:

http://simonwillison.net/2007/Aug/15/jquery/
• Web Designer Wall’s jQuery tutorials for designers:

http://www.webdesignerwall.com/tutorials/jquery-tutorials-for-designers/
• Noupe’s over 50 amazing jQuery tutorials:

http://www.noupe.com/jquery/50-amazing-jquery-examples-part1.html
• 240 plug-ins for jQuery: http://www.sastgroup.com/jquery/240-plugins-jquery

Summary
You’ve now successfully uncovered many of the techniques used to code Roma Italia. There are
plenty more—look under the hood, dive deeper into the code, and you just might find a few more
gems.

Take note that the file sizes for this site are rather large, most notably the scripts and feature
images. However, if this were a live, deployed site, we’d use actual AJAX to load images
individually and we’d minify our scripts. For example, jquery-1.3.2.js is roughly 120KB, but
minified and gzipped, it’s as little as 19KB. (This compressed version is available for download at
jquery.com.) These optimization techniques would dramatically reduce overall page size.

But the real beauty of what’s demonstrated in this case study perhaps lies in the fact that the raw
HTML markup is just as solid as the aesthetic design. If all styling is disabled, users should have
no difficult reading and navigating the site. Though perhaps not beautiful to the web designer’s
eye, meaningful and lightweight markup is a real treat for screen readers, search engine robots,
and the like. It’s the best of both worlds—beautiful visual design coupled with elegant source
code.

http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete
http://bulletproofajax.com
http://ajaxian.com
http://dhtmlsite.com/ajax.php
http://jquery.com
http://www.digital-web.com/articles/jquery_crash_course
http://simonwillison.net/2007/Aug/15/jquery
http://www.webdesignerwall.com/tutorials/jquery-tutorials-for-designers
http://www.noupe.com/jquery/50-amazing-jquery-examples-part1.html
http://www.sastgroup.com/jquery/240-plugins-jquery

CHAPTER 1

4

311

Chapter 11

Case Study: Climb the Mountains

By Simon Collison

In the previous edition of CSS Mastery, I introduced my More Than Doodles case study by talking
about the “very rich palette” from which we designers can paint. At that time, we were reaching a
period of critical mass, with web standards gaining ground across the industry. It was an exciting
time, and we were having a ball with CSS 2.1, creating stunning layouts despite problems thrown
at us by some of the older browsers.

More than three years on, we find ourselves increasingly comfortable with implementing
techniques from the CSS 3 specification in our layouts. We can replace some decorative
background images with combinations of CSS 3 rules such as border-radius and box-shadow,
and we can achieve greater control of transparency layers without resorting to semi-transparent
background images thanks to RGBa. Importantly, with progressive enhancement, we can still
deliver a neatly constructed experience to those on browsers lacking support for CSS3 and its
sweet little tools and techniques.

In this case study, you will learn about:

• HTML and CSS organization and conventions

• Grid flexibility

• Highlighting the current page based on body class

• Targeting elements with pseudo classes and adjacent sibling selectors

CHAPTER 11

312

• Combining classes for extra power and flexibility

• RGBa, border-radius and box-shadow properties

• Positioning list items and revealing content

About this case study
This case study is built on a rock-solid XHTML structure – as lean, organized, and powerful as
possible. Specifically, the XHTML does not contain any extra markup added purely for the
purpose of hooking CSS onto it. No, what we have in the markup is what we need in the markup
– and nothing extraneous. So, the aim of this chapter is to take what we have and use really
smart CSS selectors to target specific XHTML without the need for extra divs, clearing divs or
anything else that could be deemed unnecessary.

Climb the Mountains (herein referred to as CTM) is a fictitious web application dedicated to those
hardy hill walkers, trekkers, and climbers out there who like nothing more than leaving the comfort
of a warm home and spending hours, days, or weeks roaming the wildernesses in search of
nature’s pleasure. CTM is a social website with a strong community focus and networking
opportunities between members (see Figure 11-1). A key feature is the upload and export of GPS
routes to members’ own GPS devices; this data adds detailed statistics to each archived route.
Alongside this data, each route has accompanying photographs, maps, downloads, and
associated information, and the information architecture (IA) is packed with data. This is where
we can use some nifty CSS to bring things to life and ultimately ensure all copy and images are
unsullied, and the whole layout can remain extremely flexible.

The design is broken up into numerous blocks of information, so that it is easier to focus on the
area we’re discussing, rather than mess around with layers of overly decorative styling. By
analyzing a number of great techniques through this chapter, you’ll hopefully see how these can
be adapted and applied to your own designs, alongside others featured in this book.

Many thanks to my colleague Greg Wood for his considerable assistance with the Climb the
Mountains concept. All of the photographs are from my own Flickr account, mostly taken in
England’s glorious Lake District earlier this year. The typefaces include various fonts from the
Palatino family, plus more common flavors including Helvetica, Georgia, and good old Verdana,
with defaults Arial or Times New Roman in the stacks.

The case study will remain online at http://www.climbthemountains.com/cssm/.

http://www.climbthemountains.com/cssm

CASE STUDY: CLIMB THE MOUNTAINS

313

Figure 11-1. Climb the Mountains homepage

CHAPTER 11

314

Style Sheet organization and conventions
Without question or compromise, every single website I’m involved with needs to be built with a
solid foundation layer. This is a conventions package. Over the last two years, I have worked with
my colleagues to develop a base layer of rules and conventions that act as starting points for
HTML, CSS, JavaScript, and ExpressionEngine. It’s a bumper compendium of connected CSS
files, naming conventions, modules, plug-ins, and library scripts that ensure any project led or
worked on by any member(s) of the team will stay on convention and be simpler for anyone else
to step into and work with at any time (see Figure 11-2). Constantly evolving, the package is one
of the most essential tools in our box.

Figure 11-2. A typical set of style sheets from our basic files package

With specific regard for CSS, we have a set of cascading style sheets that work together to allow
great flexibility and choice when it comes to browser irregularities, and enable the team to
contribute via their own scratch files. With the latter, we use scratch files so that somebody can
add their own CSS amendments or rules, and these will be rendered in the browser due to their
place in the cascade. If the project director agrees to this CSS, it will then be taken from the
scratch file and added to the relevant primary style sheet in place of any similar existing
declarations. We also throw in very basic print and handheld style sheets, and a separate style
sheet for any form styling. This is just our way.

CASE STUDY: CLIMB THE MOUNTAINS

315

The hard-working screen.css
The screen.css style sheet contains all declarations needed for the CTM case study if you’re
working in a Mac browser or in IE 8 or Firefox on a PC, alongside the reset.css style sheet. If
you are working with IE 6 and/or IE 7, you’ll also need the IE-specific style sheets described later
in this section.

The screen.css file is linked as follows:

<link href="assets/css/screen.css" type="text/css" rel="stylesheet" media="screen"
/>

Many of the methods used in our screen.css style sheet will be familiar, but let’s take a quick look
at a couple of tools that I consider essential.

Describing contents
This tool is very easy to ignore or to dismiss as unnecessary. After all, your CSS will still work
without such descriptive notes. Think again though. What if you are building a website as part of a
larger team? What if your style sheets are often considerable in size? How do you ensure others
can easily work with your designs, and also ensure that everything remains well organized?

This is where style sheet notes, and particularly a contents introduction can be immensely
valuable. As a refresher, remember that any plain notes can be added anywhere in your style
sheet by placing them within the following syntax:

/* I am a simple note */

So, we can use this approach to provide an up-to-date table of contents for the style sheet. This
allows other designers and developers in the team to easily check that they are looking at the
right sheet and to quickly check that the rules they want are there.

/*

CLIMB THE MOUNTAINS by SIMON COLLISON

VERSION 1.0

CONTENTS ----------

 1.BODY

 2.DEFAULT STYLING

 3.HEADINGS

 4.LINKS

CHAPTER 11

316

 5.IMAGES

 6.LAYOUT

 7.BRANDING/MASTHEAD

 8.NAVIGATION

 9.SITEINFO/FOOTER

 10.GLOBAL ELEMENTS

 10.1 CAPTIONED IMAGE

 10.2 ELEVATION

 10.3 DISTANCE/ELEVATION PARAGRAPH

 11.HOMEPAGE

 11.1 CONTENT PRIMARY

 11.2 CONTENT SECONDARY

 11.3 CONTENT TERTIARY

*/

The exact layout is up to the individual or team. In the preceding example, I’ve used a structure
made of returns and tabbing to create a very legible table of contents. The important thing is that
you maintain the contents and constantly iterate it as you add rules to the style sheet, move rules
within it, or remove rules from it.

Reset
The aim of a specific reset.css sheet is to create a level playing field across all browsers and
devices. For example, some browsers have a default style sheet that might set different margin
values, padding, heading font sizes, line-height and so on from other browsers.

We bring the reset.css sheet into the cascade with the following line in screen.css:

@import url(reset.css); /* RESET CSS */

This then gives us the confidence to move forward knowing that (in most reset.css cases) we
are dealing with XHTML elements that have no margin, no padding, no line-height, no set font-
size, and so on. We can now confidently work through screen.css applying the values that we
want and not have to worry about inheriting values from the browser style sheet.

CSS wizard Eric Meyer provides what he calls a “starting point, not a self-contained black box of
no-touchiness” at http://meyerweb.com/eric/tools/css/reset/, and this was my initial starting
point for the CTM site, with just a few of my own minor tweaks and additions.

http://meyerweb.com/eric/tools/css/reset

CASE STUDY: CLIMB THE MOUNTAINS

317

IE style sheets using conditional comments
This method of targeting specific Microsoft browser versions was introduced initially with Internet
Explorer 5 and its point versions. Making use of XHTML markup wrapped in a conditional
statement, inside of an XHTML comment, this special combination of syntax can be used
anywhere in an XHTML document, giving us a brilliant opportunity to send certain information to
certain browsers.

<!--[if IE 6]> Anything here is only seen by IE6 <![endif]-->

So, in the following example, we’re using this combination of syntax to call three further style
sheets should the user be viewing the site with any version of IE 6, IE 7, or IE 8.

<!--[if IE 6]><link href="assets/css/screen-ie6.css" type="text/css"«
rel="stylesheet" media="screen" /><![endif]-->

<!--[if IE 7]><link href="assets/css/screen-ie7.css" type="text/css"«
rel="stylesheet" media="screen" /><![endif]-->

<!--[if IE 8]><link href="assets/css/screen-ie8.css" type="text/css"«
rel="stylesheet" media="screen" /><![endif]-->

The beauty of this approach is that we can avoid adding IE-specific hacks to our existing CSS
rules in screen.css (which will be implemented by all other browsers) and instead create
browser-specific rules in the relevant IE style sheets. This is the case for the CTM design, as we
are calling a number of IE-specific amendments to the CSS, which we’ll discuss later in this case
study.

Grid flexibility
A grid acts as a solid foundation for any page in any website. Using a grid should liberate you, not
restrict you. Never be afraid to break free from the grid and experiment. The grid acts as a
reminder, a guideline, and a sense of reassurance.

Typically of a predetermined width and with a designated number of columns and optional
gutters, the grid is your best friend, walking you through danger and mild peril. It acts as
middleman between Photoshop and CSS, informing your initial layout choices regarding floats,
positioning, margins, padding, borders, and so on.

CHAPTER 11

318

Like many other designers, I work with a grid layer that I can turn on and off at will, regardless of
whether I’m prototyping in Photoshop, Fireworks or the browser itself (see Figure 11-3).

Figure 11-3. Climb the Mountains with its underlying column grid

How does the CTM layout work?
To bring all of this grid discussion to relevance, the Climb the Mountains case study layout is built
on a robust yet flexible 1000-pixel wide grid. Within this 1000-pixel wide canvas, we have twelve
columns, each separated by a clear gutter. Each column is 65 pixels wide, and each gutter is 25
pixels wide, as shown in Figure 11-4.

CASE STUDY: CLIMB THE MOUNTAINS

319

Figure 11-4. Column layout

Each column has its own structure also. Within the 65-pixel wide column, we have three
subcolumns or widths (from left to right) 25 pixels, 15 pixels, 25 pixels (see Figure 11-5).

Figure 11-5. Internal subcolumn widths

These subcolumns allow us to work with a grid within a grid in some ways. They provide
additional points of reference, something else to measure to or against when twelve columns
might not be tight enough for what we need. Trace down the full screen grab example and see
how items are sometimes aligned with the main columns and sometimes with the subcolumns.

Navigation control with body classes
We can use the value assigned to the body element to change page layout, control behavior, and
make other significant changes with CSS. In the first edition of this book, I used a unique ID for
the body element of each page to control layout, combining this with a class for location, such as
<body id="threeColLayout" class="home">. This time around, I’m using only the class.

<body class="home">

It doesn’t matter whether you use an ID or a class for this purpose; the power we get from this
super-parent element is the same regardless.

Highlighting the current page
There are numerous ways of highlighting the page you are on, and many designers might use
some clever PHP scripting to trigger the CSS, perhaps highlighting the Home link on the main
navigation if on the homepage. That’s cool, but it’s just as easy with some smart CSS application
reliant on pairing the body class with a navigation class. Let’s take a look.

<body class="home">

CHAPTER 11

320

The page is identified as the home page, and we’ll now make sure each navigation item has a
relevant class:

<ul id="navigation_pri">

 <li class="nav_home">Home

 <li class="nav_routes">Routes

 <li class="nav_about">About

 <li class="nav_shop">Shop

In the preceding code snippet, you’ll see that the Home link has a class nav_home. We’ll also add
a body class to the Routes page, so we can test the behavior later on:

<body class="routes">

Next, let’s use CSS to apply the styling to the navigation list. Note that we’ll position the element
absolutely, at specific coordinates from the top and left of the main container.

ul#navigation_pri {

 list-style:none;

 margin:0;

 position:absolute;

 top:0;

 left:415px;

 font-size:19px;

 font-weight:bold;

 font-family:Helvetica,Arial,sans-serif;

}

ul#navigation_pri li {

 float:left;

 margin:0;

 padding:30px 10px 0 10px;

 height:3000px;

}

CASE STUDY: CLIMB THE MOUNTAINS

321

ul#navigation_pri li a {

 color:#000;

}

ul#navigation_pri li a:hover,

ul#navigation_pri li a:focus {

 color:#333;

 text-decoration:underline;

}

This will give us the basic styled navigation shown in Figure 11-6, but without any indication of the
page we are currently viewing. (note that we’ll examine the blockquote that sits on top of the
navigation layer later in this section):

Figure 11-6. Basic main navigation

The next step is to use a selector to define a relationship between the body class and the
navigation home class. Note that we have grouped two identical rules for the home page and the
Routes page:

.home ul#navigation_pri li.nav_home,

.routes ul#navigation_pri li.nav_routes {

 background-color:#f5f5f5;

}

The first part of the selector .home or .routes sniffs to make sure we are viewing that page. The
styling will only be applied if the ul#navigation_pri element is a child of .home or .routes. If a

CHAPTER 11

322

match is found, the action is performed. This will create the light gray background that fills the
entire navigation tab area.

Next, we can define styles for the link behavior, again grouping the identical rules for .home and
.routes:

.home ul#navigation_pri li.nav_home a,

.routes ul#navigation_pri li.nav_routes a {

 color:#278dab;

 background:#f5f5f5 0 center no-repeat;

 padding:0 0 0 20px;

}

.home ul#navigation_pri li.nav_home a:hover,

.home ul#navigation_pri li.nav_home a:focus,

.routes ul#navigation_pri li.nav_routes a:hover,

.routes ul#navigation_pri li.nav_routes a:focus {

 text-decoration:none;

 color:#000;

}

Thus, we get the blue text links we need. Finally, we can add some decoration only to the home
page link. When the home page is in view, we’ll display a small home icon to the left of the Home
link:

.home ul#navigation_pri li.nav_home a {

 background-image:url(../images/site/nav_back.gif);

}

This results in the home page display shown in Figure 11-7.

CASE STUDY: CLIMB THE MOUNTAINS

323

Figure 11-7. The selected Home link

And Figure 11-8 shows our Routes page.

Figure 11-8. The selected Routes link

Layering the blockquote
Now, back to that John Muir quote that sits on top of the main navigation. I truly love that quote –
it inspires me to get outdoors regardless of the weather and blow off those web designer’s
cobwebs. Never forget to get out there, into the real world! On CTM, we could have rotating
inspirational quotes in that part of the page to inspire the audience. Here’s the markup:

<blockquote id="johnmuir">

 <p>“Climb the mountains and get their good tidings. Nature's peace «

will flow into you as sunshine flows into trees. The winds will blow their «

own freshness into you, and the storms their energy, while cares will drop «

CHAPTER 11

324

away from you like the leaves of Autumn.”</p>
 <p><cite>John Muir, 1903</cite></p>

</blockquote>

Aside from using specific character entities for the quotation marks, there’s nothing especially
unusual there, and we can move on to defining the styling. Earlier, we positioned the
ul#navigation_pri element absolutely with position:absolute, 0px from the top and 415px from
the left.

ul#navigation_pri {

 list-style:none;

 margin:0;

 position:absolute;

 top:0;

 left:415px;

 font-size:19px;

 font-weight:bold;

 font-family:Helvetica,Arial,sans-serif;

}

We can now define the styling for the blockquote:

div#branding blockquote {

 width:505px;

 float:right;

 padding:0 70px 20px 0;

 background:url(../images/site/branding_johnmuir.jpg) no-repeat right top;

}

But, it sits behind the blue navigation tab area, as shown in Figure 11-9.

CASE STUDY: CLIMB THE MOUNTAINS

325

Figure 11-9. The blockquote is partly hidden behind the Home link.

However, considering that the navigation is positioned absolutely, if we add position:relative to
the blockquote, we can make it appear above the blue tab area:

div#branding blockquote {

 position:relative;

 width:505px;

 float:right;

 padding:0 70px 20px 0;

 background:url(../images/site/branding_johnmuir.jpg) no-repeat right top;

}

And with that, the blockquote will sit nicely above the main navigation, as illustrated in the earlier
navigation examples, such as Figure 11-7.

Strategically targeting elements
Earlier in the case study, we examined the power of using descendent selectors to control the
main navigation styling based on the body class of each page. Here, we’ll look again at how a
thoughtful approach to markup can afford greater flexibility and control through deep descendent
selectors and how this forms a basis for even greater control through advanced targeting of
elements.

Deep descendent selectors
First, let’s lay the foundations. On the right-hand side of the CTM case study, you’ll see the light
yellow Members’ Routes panel, featuring walks contributed by other users of the site. There’s

CHAPTER 11

326

nothing especially remarkable about the markup, but let’s examine it ahead of doing some
selectors magic later in the section.

Notice how we group several elements such as h3, p, and img inside each unordered list item. I’ve
often been surprised how many designers don’t realize that you can add all sorts of interesting
elements inside the li element. Often, you might only see a and maybe img inside the li element,
but you can do so much more.

<div id="others_routes">

 <h2>Members' routes (view all)</h2>

 <h3>Kinderscout circuit</h3>

 <p class="dist_elev">13.6 miles | Elevation 2,400ft</p>

 <p class="username">from Glen Swinfield <img «

src="assets/images/content/avatar_swinfield.jpg" class="avatar" «

alt="Glen Swinfield's avatar" /></p>

 <h3>Castleton Ridge Walk</h3>

 <p class="dist_elev">12.2 miles | elevation 1,343ft</p>

 <p class="username">from Phil Swan <img «

src="assets/images/content/avatar_swan.jpg" class="avatar" «

alt="Phil Swan's avatar" /></p>

 <h3>Branston Circular</h3>

 <p class="dist_elev">5.7 miles | elevation 1,213ft</p>

 <p class="username">from Gregory Wood <img «

src="assets/images/content/avatar_wood.jpg" class="avatar" «

alt="Gregory Wood's avatar" /></p>

 <h3>Ilkley Moor and Otley</h3>

CASE STUDY: CLIMB THE MOUNTAINS

327

 <p class="dist_elev">24.7 miles | elevation 2,473ft</p>

 <p class="username">from Jamie Pittock <img «

src="assets/images/content/avatar_pittock.jpg" class="avatar" «

alt="Jamie Pittock's avatar" /></p>

</div>

By building content in this way, we can collate blocks of information as lists, providing all the
hierarchy and styling control that we know and love about lists.

It is then really easy to use basic selectors to target the unordered list within the others_routes
containing div and the various elements within the li elements. Note that we’re using border-
radius, -webkit-border-radius, and –moz-border-radius rules to apply rounded corners to the
ul element, and be reassured that we’ll discuss these later in this case study.

div#others_routes ul {

 list-style:none;

 border:1px solid #dedeaf;

 background:#ffffcc;

 border-radius:5px;

 -webkit-border-radius:5px;

 -moz-border-radius:5px;

 margin:0;

 padding:10px;

}

div#others_routes ul li {

 margin:0;

 padding:10px 55px 10px 0;

 position:relative;

 border-bottom:1px solid #dedeaf;

 border-top:1px solid #fff;

}

CHAPTER 11

328

div#others_routes ul li h3 {

 margin-bottom:5px;

}

div#others_routes ul li img {

 position:absolute;

 top:10px;

 right:10px;

}

div#others_routes ul li p.username {

 margin:3px 0 0 0;

 font-style:italic;

 font-size:12px;

}

div#others_routes ul li p.username a {

 color:#666;

}

div#others_routes ul li p.username a:hover,

div#others_routes ul li p.username a:focus {

 text-decoration:underline;

}

In the preceding markup, we’re targeting deeper HTML elements with some straightforward
descendent selectors. For example, we can strategically target the link hover styling of the
username link with div#others_routes ul li p.username a:hover, descending deeper and
deeper with the selector until we define our target element–an element owned by every preceding
element in the selector, resulting in Figure 11-10.

CASE STUDY: CLIMB THE MOUNTAINS

329

Figure 11-10. The initial Members’ Routes container

Excellent. Our list of member-submitted walks and routes is shaping up nicely, and most might
leave it as it is. It looks pretty neat and tidy. But wait! We are perfectionists, and we have powerful
CSS at our disposal. Why settle for good when we could have great?

In the next two examples, we’ll neaten up the top and bottom of the routes container using some
nifty CSS tricks.

The :first-child pseudo-class
If you’ve ever wondered how a designer targets the first letter or line of a block of text, he or she
is probably using a pseudo-class such as :first-letter or :first-line. These cool tricks
enable us to style elements based on simple logic.

The :first-child pseudo-class targets only an element that is the first child of a containing
element.

In this case study, I have my container of member’s walks, with each item’s detail added within an
unordered list. Each li element has the same padding and thin border at the top and bottom.

CHAPTER 11

330

div#others_routes ul li {

 margin:0;

 padding:10px 55px 10px 0;

 position:relative;

 border-bottom:1px solid #dedeaf;

 border-top:1px solid #fff;

}

This keeps the list content spaced evenly, but I’d like to reduce the amount of padding for only the
top list item (in the example, this is the Kinderscout ridgewalk circuit walk). In fact, I don’t want
any padding at the top, and I don’t want a border either.

So, bring on the pseudo-class. Here, we create a new rule, and we use the same selector to
target the unordered list items inside the #others_routes containing div, but we add :first-
child immediately after the li element, essentially saying “go in to the container, find the
unordered list, and perform the following style override only on the very first li element you find.”

div#others_routes ul li:first-child {

 padding-top:0;

 border-top:none;

}

As Figure 11-11 shows, the Kinderscout ridgewalk circuit item has no top border or top padding
and nestles snugly under the roof of the parent container.

CASE STUDY: CLIMB THE MOUNTAINS

331

Figure 11-11. The top padding and border has been successfully removed.

It’s as simple as that, but it’s a very powerful method of targeting a specific element, with a million
and one uses. And now that we’ve dealt with the top of our contained list, let’s see what we can
do with the bottom of it.

Adjacent sibling selectors
Having just introduced you to :first-child, now would ideally be a fitting moment to introduce
the usefulness of :last-child, a method of targeting the last instance of a child element within a
specific parent container. The approach is much the same as with :first-child, so feel free to
experiment with this. Unfortunately, only recent versions of browsers such as Safari, Firefox,
Google Chrome, and Opera support this method, so we need to be mindful of IE 6, 7, and 8 and
employ an alternative approach, thanks to adjacent sibling selectors.

In this example, we now need to do the reverse of what we just did with the :first-child
pseudo-class. As we previously discussed, each unordered list item has top and bottom padding
and a top and bottom border. We successfully turned off these styles for the first li element, now
we need to turn them off for the last element.

But how do we do that? How does the style sheet know which is the very last element in a certain
group, and how can we accurately target it. This requires some kind of dark arts, right? Well, sort
of.

CHAPTER 11

332

Adjacent sibling selectors consist of several selectors separated by the + combinator. This
matches an element that is the next sibling to the first element. Note that elements must have the
same parent, and the first must immediately precede the second.

So, as with our :first-child example, we again target the others_routes parent div, and we
then methodically drill down through the selectors until we hit the element we wish to style. Our
unordered list will always only have four li elements, and that is the key to making this work:

div#others_routes ul li + li + li + li {

 padding-bottom:0;

 border-bottom:none;

}

So here, we’ve created a selector that thinks “Ah, when in the others_routes div, find the
unordered list, count along until we match the fourth li element, and apply styles to that only.”
Simple.

Thus, the result, shown in Figure 11-12, presents the fourth li element without bottom padding or
a bottom border, adding further neatness and attention to detail, simply by making the most of the
CSS selectors at our disposal.

Figure 11-12. The bottom border and padding has been removed successfully

CASE STUDY: CLIMB THE MOUNTAINS

333

Transparency, shadows, and rounded corners
In the first edition of this book, my case study relied heavily on boxes with rounded corners.
Everybody wants rounded corners at some point for a little visual flair, and well, right angle
corners are just so easy, boring maybe.

Of the seemingly endless possible methods of creating rounded corners, I settled on one that
used a fair amount of JavaScript in combination with several background image sprites and a
reasonable amount of extraneous markup. It was weighty, clumsy, awkward, and there wasn’t
really an alternative.

Fast-forward to me sitting here typing this chapter, and I’m basically just going blue, wanting to
shout “CSS 3!” as loud as I can. Things have changed: expectations have grown, and the tools
have evolved. Sure, the browsers haven’t all caught up (what else do you expect?), but as an
industry we are braver and more willing to work with new ideas and push things forward.

In this section, I’ll take one humble image and caption from the CTM homepage and do all sorts
of lovely CSS 3 things to it, without any use of JavaScript, further graphics, or extraneous
markup. Viva La Revolution!

Our aim
We’ll being with one simple 310 × 185-pixel JPG named campsite.jpg (see Figure 11-13). Then,
we’ll apply a caption with white text onto a semitransparent grey overlay at the base of the image,
and then apply a Polaroid-style photo border around the image, ensuring it has perfect rounded
corners and a believable drop shadow. Thankfully, we can do all of that with CSS.

Figure 11-13. The initial campsite.jpg image

The markup is pretty simple. Our image and caption need to be contained within one div, named
captioned_image for the purposes of this example. The paragraph is given class="caption", so
we can target it directly, and for now, that is it.

CHAPTER 11

334

<div class="captioned_image">

 <p class="caption">From the campsite bridge towards the village, Great «

Gable and Lingmell.</p>

</div>

With that markup in place, we can now experiment with three of the hottest CSS 3 techniques at
our disposal.

Caption image overlay and RGBa transparency
Colors may be specified in a number of ways. Many specify color as an RGB triplet in
hexadecimal format (a hex triplet). Others often use their common English names in some cases.
It is also possible to use RGB percentages or decimals. The following examples are all valid for
the color red:

color: #f00

color: #ff0000

color: red

color: rgb(255,0,0)

color: rgb(100%, 0%, 0%)

RGB stands for red, green, and blue and is a device familiar to most designers. RGBa introduces
a fourth channel – an alpha channel that deals with transparency. The beauty of CSS 3 is that we
can continue to specify color with RGB but also set the alpha transparency of that color with a
fourth decimal value. We can use anything from 0.0 (totally transparent) through to 1.0 (totally
solid).

In the following example, we again declare the color red with RGB, but also set a 50 percent
transparency by declaring 0.5 as the alpha transparency.

color: rgb(255,0,0,0.5)

The RGBa value is assigned only to the element we declare, so any child elements will not inherit
the transparency, which is a clear distinction from the opacity property, which will always be
inherited.

CASE STUDY: CLIMB THE MOUNTAINS

335

So, for the CTM site, the following declarations will perform the first bit of magic for our photo and
caption. We position the containing div relatively and then the caption absolutely, so that it can
be positioned exactly where we wish above the image.

div.captioned_image {

 position:relative;

}

div.captioned_image p.caption {

 position:absolute;

 bottom:0;

 left:0;

 margin:0;

 color:#fff;

 font-size:13px;

 line-height:16px;

 font-style:italic;

 padding:5px;

}

We next declare the RGBa value as rgba(0,0,0,0.5) where the first three values combine to
give us black and then the alpha transparency value of 0.5 sets a medium transparency, which
can be tweaked until we’re happy with the overall effect.

 div.captioned_image p.caption {

 position:absolute;

 bottom:0;

 left:0;

 margin:0;

 background:rgba(0,0,0,0.5);

 color:#fff;

 font-size:13px;

 line-height:16px;

 font-style:italic;

 padding:5px;

}

CHAPTER 11

336

This gives us the exact caption overlay we wanted, as shown in Figure 11-14.

Figure 11-14. The transparent caption in place

As with many exciting new CSS 3 techniques, some browsers are playing catch-up, most notably
Internet Explorer (including the current IE 8), which will not render the alpha-transparency. For
example, IE 7 will instead default to a reasonably acceptable solid layer, much like we’d see if
serving a transparent PNG graphic without forcing alpha transparency support (see Figure 11-
15).

Figure 11-15. The caption overlay as rendered by IE 7

IE 8, which still does not support RGBa, will simply render the caption text on top of the image
without any kind of background. To get around this problem, we can add a rule to the
screeni-ie8.css style sheet to ensure a gray background is placed behind the text.

CASE STUDY: CLIMB THE MOUNTAINS

337

div.captioned_image p.caption { background:#666; }

The important lesson is not to be put off by IE and its failings. I’d encourage all of you
hexadecimal triplet lovers to start experimenting with the incredible flexibility of RGBa straight
away, on a variety of elements within your layouts. You will never look back, and everything will
be much clearer!

Combining classes
I’m still surprised when I speak to designers who aren’t aware that classes can be combined to
bring greater flexibility to elements.

For example, you might use class="profile" several times on any given page, assigning
common color and layout information. However, let’s say you wish to change only the
background color based on a variable such as whether or not the user is a member or a guest.
Instead of creating two profile styles just to supply different color references, you could simply
keep colors as separate rules, and combine these with the profile class.

.profile {

width:300px;

margin:0 10px;

padding:10px;

font-size:11px;

}

.guest {

background-color:#ff9900;

}

.member {

background-color:#ff0000;

}

CHAPTER 11

338

This style could then be applied using combined classes depending on user status. Any number
of classes can be combined, simply by separating each with a space, as follows:

<div class="profile member">

<p>Member options…</p>

</div>

Bringing this to the CTM site, we can use combined classes to optionally add a frame around only
certain captioned images. Notice that, alongside captioned_image, we have added the class
polaroid:

<div class="captioned_image polaroid">

 <p class="caption">From the campsite bridge towards the village, Great «

Gable and Lingmell.</p>

</div>

We can now define the styling for this polaroid frame, and that calls for a few more tricks from
the CSS 3 specification.

border-radius
In the previous edition of CSS Mastery, both Andy and myself detailed a useful but somewhat
laborious technique for adding frames and shadows to images. This involved a couple of divs
and background images that needed to be very carefully styled and positioned. Yep, it was tough
back in 2005.

This brings us to the border-radius property, which, essentially, brings rounded corners to
elements using pure CSS declarations. Sadly, Internet Explorer (hello again) doesn’t support this
property at all, so IE corners will still be squared off, which seems acceptable to me. Currently,
the same goes for the ever-evolving Opera browser.

At the time of this writing, no popular browsers are pledging support for the standard border-
radius property, and so while it is important to include the declaration from a forward-thinking
standpoint, we also need to add two further declarations in the short-term – one for Mozilla-based
browsers such as cuddly Firefox and one for WebKit-based browser such as the ever-switched-
on Safari (which also supports elliptical corners). For more information, examples and some cool
tricks, view descriptions and examples over at http://www.the-art-of-web.com/css/border-
radius/.

All three declarations are clearly defined here:

http://www.the-art-of-web.com/css/border-radius/.All
http://www.the-art-of-web.com/css/border-radius/.All
http://www.the-art-of-web.com/css/border-radius/.All

CASE STUDY: CLIMB THE MOUNTAINS

339

.polaroid {

 border:5px solid #f00;

 border-radius:5px;

 -webkit-border-radius:5px;

 -moz-border-radius:5px;

}

Seeing as white on white isn’t exactly great for demonstrations, note that I have specified a
temporary red border so that you can see what is happening in Figure 11-16. You’ll see that each
corner is rounded around a 5px radius. This is actually the radii of a quarter eclipse defining the
exact corner. As with margin, padding, and border, there are four individual border-radius
properties—one for each corner of an element—and one shorthand property.

Figure 11-16. Using a red border clearly shows the rounded corners

Now, how much easier is that compared with the methods we were describing back in the first
edition? With our corners rounded, we can now think about applying a simple drop shadow to
give the image some sense of affordance.

box-shadow
CSS 3 brings us a significantly simpler method of creating neat drop shadows for the Safari 3 and
above and Firefox 3.5 and above browsers. The property takes three lengths as its attributes—
these being the horizontal offset, the vertical offset, and the blur radius—and finally a color.

If we apply a positive value to the horizontal offset of the shadow, the shadow will be on the right-
hand side of the element. A negative offset will put the shadow on the left of the element.

CHAPTER 11

340

If we apply a negative value to the vertical offset, the shadow will be appear on top of the
element, whereas a positive value would place the shadow below the box.

The blur radius is really handy. If the value is set to 0 the shadow will be sharp, and the higher the
number, the more blurred it will become.

Adding this to our polaroid class, we can work with the four values to create a drop shadow that
will be to the right and bottom of our captioned image, with a 5-pixel blur in a medium grey, as
follows:

.polaroid {

 border:5px solid #fff;

 border-radius:5px;

 -webkit-border-radius:5px;

 -moz-border-radius:5px;

 -webkit-box-shadow:1px 1px 5px #999;

 -moz-box-shadow:1px 1px 5px #999;

}

Brilliantly, the box-shadow will respect the border-radius value we gave earlier, so that we have a
rounded picture frame and complimentary shadow working in perfect harmony, as shown in
Figure 11-17.

Figure 11-17. Our image now has a caption, frame, and rounded corners

Alas, this isn’t yet the case in Internet Explorer, as shown in Figure 11-18.

CASE STUDY: CLIMB THE MOUNTAINS

341

Figure 11-18. Internet Explorer doesn’t render the CSS 3 properties, but the result is acceptable

We noted the lack of RGBa transparency for the caption earlier, and you’ll also see that our frame
is rendered as a grey square frame. It has the same width (5px) but is not white and not rounded.
Obviously, we’re also bereft of that beautiful shadow. Remember, we have at least ensured the
caption text sits on a gray background by adding a rule to our screen-i8.css style sheet. Oh well,
maybe things will be fixed in IE by the time I have grandchildren.

Positioning lists and revealing content
For this chunk of the case study, we’ll focus on the Your latest route area of the site, on the left of
the layout. In a fully realized concept, this would be a selection of statistics, maps, and charts
relating to a particular walk, each pane viewable via a different tab.

First, we’ll begin by adding the navigation for the stats section of the CTM homepage. The
markup requires two lists, one for the statistics tabs on the left, and one for the Share, Print, and
Email options on the right:

<ul id="route_nav">

 Map

 <li class="cur">Elevation

 Download GPS

 Full routesheet

CHAPTER 11

342

<ul id="route_action">

 <li class="share">Share

 <li class="print">Print

 <li class="edit">Edit

Note that we’ve added class="cur" to the Elevation tab, as we’ll want that to appear as selected
throughout this exercise, and we can directly target that link with this additional class.

Due to our two unordered lists inheriting a few existing styles from elsewhere in the document, we
have the basic blue link states and font-family and font-size rules shown in Figure 11-19.

Figure 11-19. The basic “Your latest route” navigation lists

Elsewhere, I’ve floated the Share, Print, and Email list to the right, with little extra of note. So, let’s
focus on the left-hand list from now on. We’ll float that to the left and add a few basic styling
declarations, including a bolder color for the selected tab:

ul#route_nav {

 list-style:none;

 font-family:Verdana,sans-serif;

 font-size:11px;

 font-weight:bold;

 float:left;

 margin:0;

}

ul#route_nav li {

 float:left;

CASE STUDY: CLIMB THE MOUNTAINS

343

 margin:0;

 padding:7px 10px;

}

ul#route_nav li a {

 color:#666;

}

ul#route_nav li a:hover,

ul#route_nav li a:focus {

 color:#333;

}

ul#route_nav li.cur a {

 color:#000;

}

This gives us our two lists as shown in Figure 11-20—one floated left and one floated right—with
some initial styling.

Figure 11-20. The two lists floated left and right

We’ll clear those floats by using clear:both on the statistics container that will follow this
navigation. Next, we’ll add a background color to the selected class:

ul#route_nav li.cur {

background:#dff1f1;

}

This defines the exact area of the selected tab, as shown in Figure 11-21.

Figure 11-21. The two lists floated left and right with the selected tab highlighted

That’s our basic Your latest route navigation sorted, but there’s another neat CSS 3 trick we can
pull.

CHAPTER 11

344

Rounding the corners
Earlier in this case study, we looked at the CSS 3 border-radius property, creating a simple
rounded-corner frame for an image.

Here, we will use similar properties to add rounded corners to a basic shape, specifically the
selected list item in our navigation.

We’re using browser-relevant varieties of border-radius-top-left and border-radius-top-right
to only apply the corners to the top of the shape:

ul#route_nav li.cur {

 background:#dff1f1;

 -moz-border-radius-topleft:3px;

 -webkit-border-top-left-radius:3px;

 -moz-border-radius-topright:3px;

 -webkit-border-top-right-radius:3px;

}

This simple adjustment to the CSS will give us the subtle but sexy tab shown in Figure 11-22 in
Firefox and Safari.

Figure 11-22. The selected tab now has rounded top corners, using only CSS

With the navigation finally resolved, we can now move on to the altogether more juicy elevation
data.

The main elevation chart
Below the Your latest route navigation bar, we’ll now add the statistics pane that appears by
default in the case study, the Elevation chart.

<div id="route_elevation">

</div>

The most important point to be aware of here is that (as mentioned earlier) we’re using the
route_elevation div to clear the floated navigation lists. So, you’ll see clear:both defined for
this div immediately.

CASE STUDY: CLIMB THE MOUNTAINS

345

.home div#route_elevation {

 clear:both;

 background:#dff1f1 url(../images/site/elevation_home.gif) 0 bottom no-
repeat;

 position:relative;

 height:195px;

}

We also position the elevation div relatively, as this will assist us later when plotting li
elements (we’ll add these shortly) on the chart. We also apply the background image
elevation_home.gif (see Figure 11-23) with one shorthand rule for color, image, position, and
repeat properties.

Figure 11-23. The elevation background image

This gives us the image shown in Figure 11-24 with the navigation data and elevation chart
combined.

Figure 11-24. Navigation and elevation container combined

CHAPTER 11

346

Next, we can create a new unordered list that will contain our elevation references. Each
reference will feature a height and associated image from Flickr. Note that each list has a unique
class, such as marker_01 and marker_02.

<div id="route_elevation">

 <li class="marker_01">

 1,442 ft

 <img src="assets/images/content/elevation_photo_1.jpg" «

alt="At 1,442 ft: Photo of the village" />

 <li class="marker_02">

 3,133 ft

 <img src="assets/images/content/elevation_photo_2.jpg" «

alt="At 3,133 ft: Pennine Way" />

 <li class="marker_03">

 2,398 ft

 <img src="assets/images/content/elevation_photo_3.jpg" «

alt="At 2,398 ft: Cup of tea" />

 <li class="marker_04">

 1,286 ft

 <img src="assets/images/content/elevation_photo_4.jpg" «

alt="At 1,286 ft: Wool packs" />

</div>

CASE STUDY: CLIMB THE MOUNTAINS

347

We’ll use these unique classes to define the display position for each list item on the chart, basing
the coordinates from the top and left of the elevation chart container.

.home div#route_elevation li.marker_01 {

 top:123px;

 left:97px;

}

.home div#route_elevation li.marker_02 {

 top:50px;

 left:237px;

}

.home div#route_elevation li.marker_03 {

 top:95px;

 left:377px;

}

.home div#route_elevation li.marker_04 {

 top:137px;

 left:517px;

}

It is still early in the process, so all we have so far are a bunch of list items each with height and
image snuggling up to the left of the container (see Figure 11-25).

Figure 11-25. Our list items are snuggling in a line to the left

CHAPTER 11

348

Before we force the list items to sit in their intended positions, let’s first hide the images, and
choose a more appropriate marker graphic. The graphic we’ll use is the typical list bullet graphic
shown in Figure 11-26 and named elevation_marker.png.

Figure 11-26. Our marker graphic

On to the list styling now, we’ll set styles such as font-family, font-size, remove or define
margin and padding, and so on. Importantly, we declare the elevation_marker.png background
image for the div#route_elevation ul li element, applying a 15-pixel margin-left to create
space between the bullet and the elevation height.

div#route_elevation ul {

 list-style:none;

 margin:0;

 font-family:Verdana,sans-serif;

 font-size:9px;

 font-weight:bold;

}

div#route_elevation ul li {

 margin:0;

}

div#route_elevation ul li a {

 color:#333;

 display:block;

 background:url(../images/site/elevation_marker.png) no-repeat 0 5px;

 padding:0 0 0 15px;

}

div#route_elevation ul li a:hover,

div#route_elevation ul li a:focus {

 color:#000;

}

div#route_elevation ul li a img {

 display:none;

}

CASE STUDY: CLIMB THE MOUNTAINS

349

Vitally, we have targeted the Flickr image thumbnails with div#route_elevation ul li a img,
using display:none to prevent the images from being displayed.

The elevation chart now shows our list styled more suitably, but still snuggling up to the left of the
container (see Figure 11-27).

Figure 11-27. Our list markers are styled but still snuggling to the left

To make sure the list elements display according to their positioned coordinates, all we need to
do is position them absolutely using position:absolute as follows:

div#route_elevation ul li {

 margin:0;

 position:absolute;

}

This repositioning works because the parent container is positioned relative to its own parent. If
it wasn’t, our absolutely positioned list items would base their coordinates from the top and left of
the browser window, which wouldn’t do at all. As Figure 11-28 shows, the elevation points are
now plotted accurately on the chart.

CHAPTER 11

350

Figure 11-28. Thanks to positioning absolutely, the markers sit at the correct coordinates

We now need to deal with the images we hid earlier and bring them into view when we roll over
each elevation point.

Our targets are the :hover and :focus pseudo-link states, and with control of those, we can easily
apply declarations that will bring the images into view on rollover.

Notice that after setting height and width, we again position the elements absolutely, and we
use negative top and right values to position the images exactly where we want them in
relation to the list marker.

div#route_elevation ul li a:hover img,

div#route_elevation ul li a:focus img {

 display:block;

 width:40px;

 height:40px;

 padding:4px 9px 10px 12px;

 position:absolute;

 top:-16px;

 right:-65px;

}

As a result, on rollover, we get the thumbnail pop-up as expected, sitting just to the right of the
marker. We added some padding around the thumbnail too (see Figure 11-29).

CASE STUDY: CLIMB THE MOUNTAINS

351

Figure 11-29. On hover, the basic image thumbnails appear

It is now time to make use of that padding and fit a neat frame and arrow graphic behind the
thumbnail images. I’m using elevation_marker_image_bg.png here, which is shown in Figure 11-
30. Note that the shadow is added to the graphic at Photoshop stage and it’s exported as a
transparent PNG.

Figure 11-30. Neat graphic to sit behind our image thumbnails

All that remains is to apply that background image to the CSS as follows:

div#route_elevation ul li a:hover img,

div#route_elevation ul li a:focus img {

 display:block;

 width:40px;

 height:40px;

 padding:4px 9px 10px 12px;

 position:absolute;

 top:-16px;

 right:-65px;

 background:url(../images/site/elevation_marker_image_bg.png) no-repeat 0 0;

}

CHAPTER 11

352

If you’re doing something similar, you may well need to fiddle with exact padding, positioning, and
so forth, but the basic building blocks are all here. As a result of all the work we’ve done in this
section, we now have a nicely executed Your latest route area of the page, with an interactive
elevation chart plotting Flickr images, shown in Figure 11-31.

Figure 11-31. The completed “Your latest route” section with tidy image rollovers

Of course, all of this would ultimately need to be hooked up to a powerful CMS to really be
exceptional, but well, this is a CSS book.

Summary
There you have it. This has been more of a brief weekend city break than two weeks by the
beach, but insightful nonetheless, I hope. I’ve really enjoyed pulling the Climb the Mountains
concept together for this second edition of CSS Mastery, especially with the freedom to cut loose
with some fresh CSS 3 ideas.

Naturally, there are oodles more bits and pieces in the Climb the Mountains site that I’d love to
have been able to walk through with you. Sadly, there just isn’t enough space in one book to go
into that level of exploration. Still, if you like a behavior or treatment in the site, and it isn’t covered
in this chapter, I think it should be easy to jump in, examine the source, and figure out how things
work. I’ve certainly done my best to structure the source code with clarity and sprinkle in a
number of helpful notes and references where possible.

Remember, the site will remain online at http://www.climbthemountains.com/cssm, and the
source code is available from www.friendsofed.com. Do feel free to take it, examine it, rip it apart,
put it back together again, and use it as inspiration for your own ideas and stunning CSS-
powered masterpieces.

http://www.climbthemountains.com/cssm
http://www.friendsofed.com

3

CHAPTER 1

4

INDEX

355

Index

Numbers & Symbols
+ combinator, 332
1-pixel transparent GIF, 5
960 layout, 281, 282
1020 layout, 282
1040 layout, 282
1080 layout, 281, 282

A
absolute positioning, 60–61

description, 129
in relative container, 269–270

:active dynamic pseudo-class selector,
110

adjacent sibling selector, 29
:after pseudo-class, 68
Ajax, adding interactivity with, 304–306
almost standards mode, 22
anchor type selector, 109
annotating CSS files, 44
Asynchronous JavaScript + XML. See

Ajax

attribute selectors, 30–34, 285

determining external links, 116
form layout, 190

additions for advanced browsers,
193

browser support for, 191
IE version support for, 118

autocomplete.css, 281, 306

B
background images, 71–74
background-image property, 84
background-position property, 84
bitmapped corner mask, 81
block boxes, 57
block-level elements, 57, 119
blockquote

defining styling for, 324–325
layering, 323–325

blur radius attribute, 340
body classes

highlighting current page, 319–325
navigation control with, 319–325
overview, 319

INDEX

356

pairing with navigation class, 319–
322

body element
adding class names or id attribute

to, 38
unique IDs for, 319

border property, 51
border-collapse property, 181
border-image property, 86, 87
border-padding property, 182
border-radius property, 85, 92, 338–

339, 340
border-radius rule, 327
borders

applying to isolate bugs, 254
in li element, 329
table border models, 181

box model, 21, 51, 52
IE and, 53–54
margin collapsing, 54–57

boxes, rounded-corner, 74–83
fixed-width rounded-corner boxes,

75
flexible-width rounded-corner boxes,

78
box-shadow property, 92, 339–341
box-sizing property, 54
branding element, 226
browser bugs, 246
browser modes, 21, 22
browser support, 271, 273
BUG keyword, CSS comments, 44
bugs, 245–273

avoiding, 254
common, 264–271
fixing problems versus fixing

symptoms, 256
help resources, 256
hunting for, 246–256
workarounds, 260–264

bullet, custom, 134
button styled links, 119, 120, 128
buttons

Pixy-style rollovers, 121
rollovers with images, 120

C
caption element, data tables, 178, 182
captions

image overlay, 334–337

RGBa transparency, 334–337
cascade process, 35, 39
Cederholm, Dan, 81
cellspacing property, 182
center keyword, positioning images, 73
centering designs, 210–211
check boxes

form layout, 190
multicolumn, 197

child selector, 28, 264
Clagnut.com, 91
class names, 8–10, 11, 12, 38
class selectors, 26
classes, combining, 337–338
classitis, 11
clear class, multicolumn check boxes,

199
clear property, 64, 65
clear:both property, 343, 344
Climb Mountains (CTM) case study,

311–352
flexible grid use, 317–319
modifying image with caption, 333–

352
border-radius property, 338–339
box-shadow property, 339–341
caption image overlay and RGBa

transparency, 334–337
combining classes, 337–338
main elevation chart, 344–352
overview, 333
positioning lists and revealing

content, 341–343
rounding corners, 344

navigation control with body
classes, 319–325

highlighting current page, 319–
323

layering blockquote, 323–325
overview, 319

overview, 311–312
style sheet organization and

conventions, 314–317
targeting elements, 325, 332

adjacent sibling selectors, 331–
332

deep descendent selectors, 325–
329

:first-child pseudo-class, 329–
331

overview, 325

INDEX

357

col element, data tables, 179
colgroup element, data tables, 179
collapsed table border model, 181
colors, specifying, 334–335
column-count property, 236
column-gap property, 236
columns, in grids, 318–319
column-width property, 236
combining classes, 337–338
comments, 41–45

conditional, 98, 260, 261, 317
removing, 45

content area, 206, 207
contents, describing with notes, 315–

316
conventions package, 314
corner mask, bitmapped, 81
corners

drop shadows, 88
mountaintop corners, 81
rounded-corner boxes, 74

fixed-width, 75
flexible-width, 78

rounding, 344
CSS (Cascading Style Sheets)

history of, 6
versions of, 17–18

CSS 3 columns, 236, 238
CSS extensions, 86
CSS frameworks, versus CSS systems,

238, 243
CSS image maps, 150, 156
CSS opacity, 95
CSS sprites, 123, 125
CSS validator, 246
CSS2, advanced features, 284, 292
CSS3, advanced features, 284, 292
CSS-Discuss, 256
CSSDoc, 44
Cufón, 298, 299, 300, 301, 302

D
data tables

caption element, 178
col element, 179
colgroup element, 179
styling data tables, 176–182

adding visual interest, 182
data table markup, 179
table border models, 181

table-specific elements, 178
summary attribute, table element,

178
tbody element, 178
tfoot element, 178
thead element, 178

date input, not displaying label for every
element, 195

datepicker.css, 281
Davidson, Mike, 104
definition descriptions <dd>, 172
definition lists, 171, 172
definition term <dt>, 172
descendent selectors, 25, 325–329
display property, 57, 189
display:none property, 349
div element, 12, 13, 89
divitus, 13
DOCTYPE declaration

browser modes, 21
validating pages, 19

DOCTYPE switching, 22–23
documents

applying styles to, 40–45
downloadable, highlighting, 118

double-margin float bug, 264–265
downloadable documents, highlighting,

118
drop shadows, 88–94

Clagnut.com, 91
coding for IE6, 91
creating, 339–341
using relative positioning, 91

DTD (document type definition), 19
dynamic pseudo-classes, 27

E
elastic layouts, 219, 220, 223, 226, 228
elements

defining, 207
HTML, 7
naming, 10
sizing, 258–259
targeting, 325–332

adjacent sibling selectors, 331–
332

deep descendent selectors, 325–
329

:first-child pseudo-class, 329–
331

INDEX

358

overview, 325
elevation chart, in CTM case study,

344–352
em layout, strong element, 193
email links, highlighting, 117
equal-height columns, 231, 236
escape characters, hacks and filters,

262–263
extensions, 86
external links, 115

F
Fahrner Image Replacement. See FIR
Fahrner, Todd, 103
faux columns, 228–231
feedback message, form layout, 201
feeds, highlighting, 118
fieldset element

form layout, 186–188
identifying purpose of, 186
multicolumn check boxes, 197–198

filters
band pass, 262–263
conditional comments, IE, 260
overview, 261–262
using, 262

FIR (Fahrner Image Replacement), 103
Firefox browser, creating drop shadows

for, 339–341
Firefox Web Developer Toolbar, 21,

247
:first-child pseudo-class, 329–331
fixed positioning, 61
fixed-width layouts, 219, 220
fixed-width rounded-corner boxes, 75–

81
Flickr-style image maps, 156, 164
float model, 62, 69
float-based layouts, 212, 218
floated elements, 212
floated layouts, 258
floating, 51, 62, 69

horizontal navigation bar, 142
multicolumn check boxes, 199

:focus pseudo-class selector, 110
:focus pseudo-link state, 350
font linking, 292, 302
font-family property, 342
font-size property, 342
footers, tfoot element, 178

for attribute, label element, 187
form layout, 185–203

additions for advanced browsers,
192

attribute selectors, 190, 193
basic layout, 187
check boxes, 190, 197
emphasizing field, 193
feedback message, 201
fieldset element, 186
form elements, 186, 187
form labels, 187
grouping related blocks of

information, 186
horizontal form alignment, 194
input element, 190
label element, 187
legend element, 186
radio buttons, 190
required fields, 193
strong element, 193

G
gotchas, 44
gradients, background images, 72
grids, 282, 284, 317–319

H
hacks

child selector, 264
overview, 261, 262
star HTML, 263
using, 262

hard-working screen.css, 315–316
hasLayout function, 257
hasLayout property, 259
hAtom format, 17
hCalendar format, 14, 17
hCard format, 15, 16, 17
headers

distinguishing from rows, 183
thead element, 178

highlighting
current page, 319–323
downloadable documents, 118
feeds, 118
links, 115–117

horizontal form alignment, 194

INDEX

359

horizontal offset attribute, 340
:hover dynamic pseudo-class selector,

110
:hover pseudo-class, creating rollover

effects, 120
:hover pseudo-link state, 350
hProduct format, 17
hRecipe format, 17
hReview format, 17
HTML

structured, 4
versions of, 17, 18

HTML 4.01 Strict, 279
HTML 5, 279–280
HTML Validator for Firefox, 247

I
icons, external links, 115
id attribute, adding to body tag, 38
IDs, 8, 9, 11, 12, 26, 319
ie.css, 281, 286
IFR (Inman Flash Replacement), 104
image maps

CSS image maps, 150
Flickr-style, 156, 164

image-repeat property, 101
images

background, 71–74
gradients, 72
modifying, in CTM case study, 333–

352
border-radius property, 338–339
box-shadow property, 339–341
caption image overlay and RGBa

transparency, 334–337
combining classes, 337–338
overview, 333
positioning lists and revealing

content, 341–343
rounding corners, 344

replacement, 102–105
Fahrner Image Replacement,

103
Inman Flash Replacement (IFR),

104
Phark method, 103
Scalable Inman Flash

Replacement (sIFR), 104
rollovers with, 120, 121
tiling images, 72

import (@import) rule, band pass filters,
262, 263

importing, 40, 41
indentation, lists, 134
inheritance, 39
inline boxes, 58
inline elements, 57, 119
Inman Flash Replacement (IFR), 104
Inman, Shaun, 104
input element

form layout, 190
name attribute, 187

internal links, 116
Internet Explorer (IE) browser

box model and, 53–54
bugs, 253, 256

duplicate character bug, 267–
268

peek-a-boo bug, 268–269
style sheets using conditional

comments, 317

J
Johansson, Roger, 81
jQuery, adding interactivity with, 302–

307

K
KLUDGE keyword, 44

L
label element

for attribute, 187
display property, 189
form layout, 187, 189
not displaying for every element,

195
:last-child pseudo class, 331
layering blockquote, 323–325
layout

defined, 257
effect of, 258–259
problems with, 256–259

left keyword, 73
legend element, 186–188
li element, adding elements into, 326–

327

INDEX

360

lightweight markup, 277–278
line boxes

clearing, 63–69
inline elements within, 58

line-height attribute, 119
:link pseudo-class selector, 110
link pseudo-classes, 27
links

styling, 109–130
highlighting email links, 117
indicating external links, 115

turning off underline for, 111
liquid layouts, 220–223, 226–228
lists

collating blocks of information as,
327

definition, 171–172
styling, 133–134
vertical navigation bar, 138

list-style-image property, 134

M
main elevation chart, 344–352
margin collapsing

box model, 54–57
problems with, 249–251

margin property, 51
margin:auto declaration, 211
margins, centering design, 210–211
markup

history of, 4–6
important factors, 277–278
meaningful, 7–8

max-width property, 227
meaningful markup, 277
microformats, 13, 17
minimal test cases, 255
mountaintop corners, 81
-moz-border-radius rule, 327
multicolumn check boxes, form layout,

197
multi-column layout, 295–296
multiple background feature, 285

N
name attribute, input element, 187
nav bars

creating, 133

graphical, 141–144
highlighting current page in, 138–

139
horizontal, 139–141
vertical, 135–138

navigation class, pairing body class
with, 319–322

navigation control, with body classes,
319–325

highlighting current page, 319–323
layering blockquote, 323–325

nested boxes, 58
nonsemantic markup, 83
nontiled images, adding to page, 72
notes, style sheet, 315–316

O
opacity, 95
Orchard, Dunstan, 88
outline property, 52
overflow property, 67, 227, 234

P
padding, 134, 250, 329
padding property, 52
page layout, 205–243

elastic, 223–228
equal-height columns, 231–236
faux columns, 228–231
fixed-width, 219–220
float-based, 212, 218
foundations for, 208–211
liquid, 219, 226–228
planning, 206–208

page zooming, 292
parallax scrolling, 99
pattern portfolio, 46
Phark method, image replacement, 103
pixels, three-pixel text jog bug, 267
Pixy-style rollovers, 121–123
PNG transparency, 97
polaroid class, 338, 340
position:absolute property, 349
positioning, 51, 57–62

background images, 73–74
lists, 341–343

profile class, 337
pseudo classes, 27

INDEX

361

Q
quirks mode, 21, 252

R
radio buttons, form layout, 190
rel attribute, 140
relative positioning, 59

description, 60
drop shadows using, 91

remote rollovers, 165–170
repeating patterns, 206
required fields, form layout, 193
reset.css sheet, 280, 281, 316
RGBa transparency, 334–337
rollovers, 120–121, 150

with CSS3, 125–128
Flicker-style image maps, 156–164
graphical nav bar, 144
Pixy-style, 121–123
remote, 165–170

Roma Italia case study, 276–309
rounded corner boxes, 74–83

expanding box horizontally, 78
expanding box vertically, 75
fixed-width rounded-corner boxes,

75–81
flexible-width rounded-corner boxes,

78
mountaintop corners, 81
using CSS 3 multiple backgrounds,

84
rounding corners, 344
rules, specificity of, 35
Rundle, Mike, 103
Rutter, Richard, 91

S
Safari 3 browser, creating drop

shadows for, 339–341
Scalable Inman Flash Replacement

(sIFR), 104
scratch files, 314
screen.css file, 315, 317
selectors, 25–36

adjacent sibling selector, 29
applying generic styles, 26
attribute selector, 30
child selector, 28

class selectors, 26
to define relationship between body

and navigation classes, 321
descendant selectors, 25
descendent, 325–329
ID selectors, 26
pseudo-class selector, 27
rule specificity, 35
selector specificity, 35
sibling, 331–332
simple selectors, 25
targetting elements

by attribute existence, 30
by descendant, 25
element children, 28
with same parent, 29
by type, 25

type selectors, 25
universal selector, 27

separate table border model, 181
shadows

creating, 339–341
drop shadows, 88–95

sibling selectors, 331–332
sIFR (Scalable Inman Flash

Replacement), 104
simple selectors, 25
.slideUp method, 304
sliding doors technique

expandable tabbed navigation, 144–
147

flexible-width rounded-corner boxes,
79

sort order problems, 247–248
spacer GIFs, 5, 6
specificity

problems with, 247–248
rules, 35
using in stylesheets, 37

Stackoverflow, 256
standards mode, 21, 252
standards-compliant browsers, 253
star HTML hack, 263
strong element, 193
structural areas, 206
style guides, 45–47
style sheets

applying styles to documents, 40–45
breaking down, 42
comments in CSS, 41–45
importing, 40

INDEX

362

planning, organizing and
maintaining, 40–45

removing comments, 45
Styled fixed-width box, 78
styling

data tables, 176–185
forms, 185–203
links, 109–130

highlighting email links, 117
indicating external links, 115

lists, 133–134
Suckerfish drop-downs, 147, 150
summary attribute, table element, 178
syntactical errors, 246, 252

T
table border models, styling data

tables, 181
table of contents for style sheet, 315
tables, styling data tables, 176–185
Tantek Çelik filters, 262–263
:target pseudo-class, 114
targeting elements, 325–332

adjacent sibling selectors, 331–332
deep descendent selectors, 325,

329
:first-child pseudo-class, 329–331
overview, 325

tbody element, 178
text. See also captions

scaling, 292
zooming, 292

text-align property, 211
text-decoration property, 111
text-overflow feature, 288, 292
tfoot element, 178
thead element, 178, 183
three-column floated layout, 216, 218
three-pixel text jog bug, 265–266
tiling images, 72
TODO keyword, 44
tooltips, 128–130

transparency, RGBa, 334–337
two-column floated layout, 213–216
type selectors, 25
typographical errors, 246–252

U
underlines, 111–113
unique IDs, for body element, 319
universal selector, 27
username link, 328

V
validation, 19–20, 21, 246–247
vertical navigation bars, 138
vertical offset attribute, 340
:visited pseudo-class selector, 110
visited-link styles, 113
visual formatting model, 57, 59

W
W3C validator, 19
Web Developer Toolbar, topographic

view, 250
Web Standards Group, 256
webkit-border-radius rule, 327
-webkit-gradient value, 126
websites

style guides, 45
uniformity among browsers, 285–

287
Wubben, Mark, 105

XYZ
XFN format, 17
XHTML 1.0 Strict, 278
YUI Grids, 238

	Prelims
	Contents at a Glance
	Contents
	Foreword
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Who is this book for?
	How is this book structured?
	Conventions used in this book

	Setting the Foundations
	Structuring your code
	A brief history of markup
	The power of meaning
	IDs and class names
	Naming your elements
	IDs or Classes?
	Divs and spans
	Microformats
	Different versions of HTML and CSS

	Document types, DOCTYPE switching, and browser modes
	Validation
	Browser modes
	DOCTYPE switching

	Summary
	Chapter 2

	Getting Your Styles to Hit the Target
	Unknown
	Common selectors
	Pseudo-classes

	The universal selector
	Advanced selectors
	Child and adjacent sibling selectors
	Attribute selectors

	The cascade and specificity
	Specificity
	Using specificity in your style sheets
	Adding a class or an ID to the body tag

	Inheritance

	Planning, organizing, and maintaining your style sheets
	Applying styles to your document
	Structuring your code
	Note to self
	Removing comments and optimizing your style sheets

	Style guides

	Summary
	Chapter 3

	Visual Formatting Model Overview
	Box model recap
	IE and the box model
	Margin collapsing

	Positioning recap
	The visual formatting model
	Relative positioning
	Absolute positioning
	Fixed positioning

	Floating
	Line boxes and clearing

	Summary
	Chapter 4

	Using Backgrounds for Effect
	Background image basics
	Rounded-corner boxes
	Fixed-width rounded-corner boxes
	Flexible rounded-corner box

	Mountaintop corners
	Multiple background images
	border-radius
	border-image

	Drop shadows
	Easy CSS drop shadows
	Drop shadows
	Clagnut
	Box-shadow

	Opacity
	Unknown
	CSS opacity
	RGBa
	PNG transparency
	CSS parallax effect

	Image replacement
	Fahrner Image Replacement (FIR)
	Phark
	Scalable Inman Flash Replacement (sIFR)

	Summary
	Chapter 5

	Styling Links
	Simple link styling
	Fun with underlines
	Simple link embellishments
	Fancy link underlines

	Visited-link styles
	Styling link targets
	Highlighting different types of links
	Highlighting downloadable documents and feeds

	Creating links that look like buttons
	Simple rollovers
	Rollovers with images
	Pixy-style rollovers
	CSS sprites
	Rollovers with CSS 3

	Pure CSS tooltips
	Summary
	Chapter 6

	Styling Lists and Creating Nav Bars
	Basic list styling
	Creating a basic vertical nav bar
	Highlighting the current page in a nav bar
	Creating a simple horizontal nav bar
	Creating a graphical nav bar
	Simplified sliding door tabbed navigation
	Suckerfish drop-downs
	CSS image maps
	Flickr-style image maps

	Remote rollovers
	A short note about definition lists
	Summary
	Chapter 7

	Styling Forms and Data Tables
	Styling data tables
	Table-specific elements
	Summary and caption
	thead, tbody, and tfoot
	col and colgroups

	Data table markup
	Styling the table
	Adding the visual style

	Simple form layout
	Useful form elements
	Form labels

	The basic layout
	Other elements
	Embellishments
	Required fields

	Complicated form layout
	Accessible date input
	Multicolumn check boxes
	Submit buttons

	Form feedback

	Summary
	Chapter 8

	Layout
	Planning your layout
	Setting the foundations
	Centering a design using margins

	Float-based layouts
	Two-column floated layout
	Three-column floated layout

	Fixed-width, liquid, and elastic layout
	Liquid layouts
	Elastic layouts
	Liquid and elastic images

	Faux columns
	Equal-height columns
	CSS 3 columns
	CSS Frameworks vs. CSS Systems
	Summary
	Chapter 9

	Bugs and Bug Fixing
	Bug hunting
	Common CSS problems
	Problems with specificity and sort order
	Problems with margin collapsing

	Bug hunting basics
	Try to avoid bugs in the first place
	Isolate the problem
	Creating minimal test cases
	Fixing the problem, not the symptoms
	Asking for help

	Having layout
	What is layout?
	What effect does layout have?

	Workarounds
	Internet Explorer conditional comments
	A warning about hacks and filters
	Using hacks and filters sensibly
	Applying the IE for Mac band pass filter
	Applying the star HTML hack
	Applying the child selector hack

	Common bugs and their fixes
	Double-margin float bug
	Three-pixel text jog bug
	IE 6 duplicate character bug
	IE 6 peek-a-boo bug
	Absolute positioning in a relative container
	Stop picking on Internet Explorer

	Graded browser support
	Summary
	Chapter 10

	Case Study: Roma Italia
	About this case study
	The foundation
	An eye toward HTML 5
	reset.css

	The 1080 layout and grid
	Using grids in web design

	Advanced CSS 2 and CSS 3 features
	Dowebsitesneedtolookexactlythesameineverybrowser.com?
	Attribute selector
	Box-shadow, RGBa, and text-overflow

	Font linking and better web typography
	Setting font-size like it’s 1999
	Hanging punctuation
	Multicolumn text layout
	@font-face
	Cufón, an interim step toward @font-face

	Adding interactivity with AJAX and jQuery
	AJAX
	jQuery
	Using AJAX and jQuery for the search feature

	Summary
	Chapter 11

	Case Study: Climb the Mountains
	About this case study
	Style Sheet organization and conventions
	The hard-working screen.css
	Describing contents

	Reset
	IE style sheets using conditional comments

	Grid flexibility
	How does the CTM layout work?

	Navigation control with body classes
	Highlighting the current page
	Layering the blockquote

	Strategically targeting elements
	Deep descendent selectors
	The :first-child pseudo-class
	Adjacent sibling selectors

	Transparency, shadows, and rounded corners
	Our aim
	Caption image overlay and RGBa transparency
	Combining classes
	border-radius
	box-shadow

	Positioning lists and revealing content
	Rounding the corners
	The main elevation chart

	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 729.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 729.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 729.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 729.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 729.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 729.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 729.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 729.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 729.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 729.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 729.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 729.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 729.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 729.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 729.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 729.000]
>> setpagedevice

